Description: The domain of a composition. Exercise 27 of Enderton p. 53. (Contributed by NM, 4-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmco | |- dom ( A o. B ) = ( `' B " dom A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 | |- dom ( A o. B ) = ran `' ( A o. B ) |
|
| 2 | cnvco | |- `' ( A o. B ) = ( `' B o. `' A ) |
|
| 3 | 2 | rneqi | |- ran `' ( A o. B ) = ran ( `' B o. `' A ) |
| 4 | rnco2 | |- ran ( `' B o. `' A ) = ( `' B " ran `' A ) |
|
| 5 | dfdm4 | |- dom A = ran `' A |
|
| 6 | 5 | imaeq2i | |- ( `' B " dom A ) = ( `' B " ran `' A ) |
| 7 | 4 6 | eqtr4i | |- ran ( `' B o. `' A ) = ( `' B " dom A ) |
| 8 | 1 3 7 | 3eqtri | |- dom ( A o. B ) = ( `' B " dom A ) |