| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmresv |
|- dom ( A |` _V ) = dom A |
| 2 |
|
resss |
|- ( A |` _V ) C_ A |
| 3 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
| 4 |
|
ssexg |
|- ( ( ( A |` _V ) C_ A /\ A e. _V ) -> ( A |` _V ) e. _V ) |
| 5 |
2 3 4
|
sylancr |
|- ( A ~<_ _om -> ( A |` _V ) e. _V ) |
| 6 |
|
fvex |
|- ( 1st ` x ) e. _V |
| 7 |
|
eqid |
|- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) = ( x e. ( A |` _V ) |-> ( 1st ` x ) ) |
| 8 |
6 7
|
fnmpti |
|- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) Fn ( A |` _V ) |
| 9 |
|
dffn4 |
|- ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) Fn ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) |
| 10 |
8 9
|
mpbi |
|- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) |
| 11 |
|
relres |
|- Rel ( A |` _V ) |
| 12 |
|
reldm |
|- ( Rel ( A |` _V ) -> dom ( A |` _V ) = ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) |
| 13 |
|
foeq3 |
|- ( dom ( A |` _V ) = ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) -> ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) ) |
| 14 |
11 12 13
|
mp2b |
|- ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) |
| 15 |
10 14
|
mpbir |
|- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) |
| 16 |
|
fodomg |
|- ( ( A |` _V ) e. _V -> ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) -> dom ( A |` _V ) ~<_ ( A |` _V ) ) ) |
| 17 |
5 15 16
|
mpisyl |
|- ( A ~<_ _om -> dom ( A |` _V ) ~<_ ( A |` _V ) ) |
| 18 |
|
ssdomg |
|- ( A e. _V -> ( ( A |` _V ) C_ A -> ( A |` _V ) ~<_ A ) ) |
| 19 |
3 2 18
|
mpisyl |
|- ( A ~<_ _om -> ( A |` _V ) ~<_ A ) |
| 20 |
|
domtr |
|- ( ( ( A |` _V ) ~<_ A /\ A ~<_ _om ) -> ( A |` _V ) ~<_ _om ) |
| 21 |
19 20
|
mpancom |
|- ( A ~<_ _om -> ( A |` _V ) ~<_ _om ) |
| 22 |
|
domtr |
|- ( ( dom ( A |` _V ) ~<_ ( A |` _V ) /\ ( A |` _V ) ~<_ _om ) -> dom ( A |` _V ) ~<_ _om ) |
| 23 |
17 21 22
|
syl2anc |
|- ( A ~<_ _om -> dom ( A |` _V ) ~<_ _om ) |
| 24 |
1 23
|
eqbrtrrid |
|- ( A ~<_ _om -> dom A ~<_ _om ) |