| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmresv |  |-  dom ( A |` _V ) = dom A | 
						
							| 2 |  | resss |  |-  ( A |` _V ) C_ A | 
						
							| 3 |  | ctex |  |-  ( A ~<_ _om -> A e. _V ) | 
						
							| 4 |  | ssexg |  |-  ( ( ( A |` _V ) C_ A /\ A e. _V ) -> ( A |` _V ) e. _V ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( A ~<_ _om -> ( A |` _V ) e. _V ) | 
						
							| 6 |  | fvex |  |-  ( 1st ` x ) e. _V | 
						
							| 7 |  | eqid |  |-  ( x e. ( A |` _V ) |-> ( 1st ` x ) ) = ( x e. ( A |` _V ) |-> ( 1st ` x ) ) | 
						
							| 8 | 6 7 | fnmpti |  |-  ( x e. ( A |` _V ) |-> ( 1st ` x ) ) Fn ( A |` _V ) | 
						
							| 9 |  | dffn4 |  |-  ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) Fn ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) | 
						
							| 10 | 8 9 | mpbi |  |-  ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) | 
						
							| 11 |  | relres |  |-  Rel ( A |` _V ) | 
						
							| 12 |  | reldm |  |-  ( Rel ( A |` _V ) -> dom ( A |` _V ) = ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) | 
						
							| 13 |  | foeq3 |  |-  ( dom ( A |` _V ) = ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) -> ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) ) | 
						
							| 14 | 11 12 13 | mp2b |  |-  ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) | 
						
							| 15 | 10 14 | mpbir |  |-  ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) | 
						
							| 16 |  | fodomg |  |-  ( ( A |` _V ) e. _V -> ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) -> dom ( A |` _V ) ~<_ ( A |` _V ) ) ) | 
						
							| 17 | 5 15 16 | mpisyl |  |-  ( A ~<_ _om -> dom ( A |` _V ) ~<_ ( A |` _V ) ) | 
						
							| 18 |  | ssdomg |  |-  ( A e. _V -> ( ( A |` _V ) C_ A -> ( A |` _V ) ~<_ A ) ) | 
						
							| 19 | 3 2 18 | mpisyl |  |-  ( A ~<_ _om -> ( A |` _V ) ~<_ A ) | 
						
							| 20 |  | domtr |  |-  ( ( ( A |` _V ) ~<_ A /\ A ~<_ _om ) -> ( A |` _V ) ~<_ _om ) | 
						
							| 21 | 19 20 | mpancom |  |-  ( A ~<_ _om -> ( A |` _V ) ~<_ _om ) | 
						
							| 22 |  | domtr |  |-  ( ( dom ( A |` _V ) ~<_ ( A |` _V ) /\ ( A |` _V ) ~<_ _om ) -> dom ( A |` _V ) ~<_ _om ) | 
						
							| 23 | 17 21 22 | syl2anc |  |-  ( A ~<_ _om -> dom ( A |` _V ) ~<_ _om ) | 
						
							| 24 | 1 23 | eqbrtrrid |  |-  ( A ~<_ _om -> dom A ~<_ _om ) |