| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmdbr |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
| 2 |
|
chincl |
|- ( ( x e. CH /\ A e. CH ) -> ( x i^i A ) e. CH ) |
| 3 |
2
|
ancoms |
|- ( ( A e. CH /\ x e. CH ) -> ( x i^i A ) e. CH ) |
| 4 |
3
|
adantlr |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( x i^i A ) e. CH ) |
| 5 |
|
simplr |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> B e. CH ) |
| 6 |
|
simpr |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> x e. CH ) |
| 7 |
|
inss1 |
|- ( x i^i A ) C_ x |
| 8 |
|
chlub |
|- ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( ( x i^i A ) C_ x /\ B C_ x ) <-> ( ( x i^i A ) vH B ) C_ x ) ) |
| 9 |
8
|
biimpd |
|- ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( ( x i^i A ) C_ x /\ B C_ x ) -> ( ( x i^i A ) vH B ) C_ x ) ) |
| 10 |
7 9
|
mpani |
|- ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ x ) ) |
| 11 |
4 5 6 10
|
syl3anc |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ x ) ) |
| 12 |
|
simpll |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> A e. CH ) |
| 13 |
|
inss2 |
|- ( x i^i A ) C_ A |
| 14 |
|
chlej1 |
|- ( ( ( ( x i^i A ) e. CH /\ A e. CH /\ B e. CH ) /\ ( x i^i A ) C_ A ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) |
| 15 |
13 14
|
mpan2 |
|- ( ( ( x i^i A ) e. CH /\ A e. CH /\ B e. CH ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) |
| 16 |
4 12 5 15
|
syl3anc |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) |
| 17 |
11 16
|
jctird |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( ( x i^i A ) vH B ) C_ x /\ ( ( x i^i A ) vH B ) C_ ( A vH B ) ) ) ) |
| 18 |
|
ssin |
|- ( ( ( ( x i^i A ) vH B ) C_ x /\ ( ( x i^i A ) vH B ) C_ ( A vH B ) ) <-> ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) ) |
| 19 |
17 18
|
imbitrdi |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) ) ) |
| 20 |
|
eqss |
|- ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) /\ ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) |
| 21 |
20
|
baib |
|- ( ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) |
| 22 |
19 21
|
syl6 |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |
| 23 |
22
|
pm5.74d |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |
| 24 |
23
|
ralbidva |
|- ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> A. x e. CH ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |
| 25 |
1 24
|
bitrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |