Step |
Hyp |
Ref |
Expression |
1 |
|
dmdbr |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
2 |
|
chincl |
|- ( ( x e. CH /\ A e. CH ) -> ( x i^i A ) e. CH ) |
3 |
2
|
ancoms |
|- ( ( A e. CH /\ x e. CH ) -> ( x i^i A ) e. CH ) |
4 |
3
|
adantlr |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( x i^i A ) e. CH ) |
5 |
|
simplr |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> B e. CH ) |
6 |
|
simpr |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> x e. CH ) |
7 |
|
inss1 |
|- ( x i^i A ) C_ x |
8 |
|
chlub |
|- ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( ( x i^i A ) C_ x /\ B C_ x ) <-> ( ( x i^i A ) vH B ) C_ x ) ) |
9 |
8
|
biimpd |
|- ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( ( x i^i A ) C_ x /\ B C_ x ) -> ( ( x i^i A ) vH B ) C_ x ) ) |
10 |
7 9
|
mpani |
|- ( ( ( x i^i A ) e. CH /\ B e. CH /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ x ) ) |
11 |
4 5 6 10
|
syl3anc |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ x ) ) |
12 |
|
simpll |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> A e. CH ) |
13 |
|
inss2 |
|- ( x i^i A ) C_ A |
14 |
|
chlej1 |
|- ( ( ( ( x i^i A ) e. CH /\ A e. CH /\ B e. CH ) /\ ( x i^i A ) C_ A ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) |
15 |
13 14
|
mpan2 |
|- ( ( ( x i^i A ) e. CH /\ A e. CH /\ B e. CH ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) |
16 |
4 12 5 15
|
syl3anc |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( x i^i A ) vH B ) C_ ( A vH B ) ) |
17 |
11 16
|
jctird |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( ( x i^i A ) vH B ) C_ x /\ ( ( x i^i A ) vH B ) C_ ( A vH B ) ) ) ) |
18 |
|
ssin |
|- ( ( ( ( x i^i A ) vH B ) C_ x /\ ( ( x i^i A ) vH B ) C_ ( A vH B ) ) <-> ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) ) |
19 |
17 18
|
syl6ib |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) ) ) |
20 |
|
eqss |
|- ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) /\ ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) |
21 |
20
|
baib |
|- ( ( ( x i^i A ) vH B ) C_ ( x i^i ( A vH B ) ) -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) |
22 |
19 21
|
syl6 |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( B C_ x -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |
23 |
22
|
pm5.74d |
|- ( ( ( A e. CH /\ B e. CH ) /\ x e. CH ) -> ( ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |
24 |
23
|
ralbidva |
|- ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> A. x e. CH ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |
25 |
1 24
|
bitrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( x i^i ( A vH B ) ) C_ ( ( x i^i A ) vH B ) ) ) ) |