Step |
Hyp |
Ref |
Expression |
1 |
|
dmdbr |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
2 |
1
|
biimpd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B -> A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) ) ) |
3 |
|
sseq2 |
|- ( x = C -> ( B C_ x <-> B C_ C ) ) |
4 |
|
ineq1 |
|- ( x = C -> ( x i^i A ) = ( C i^i A ) ) |
5 |
4
|
oveq1d |
|- ( x = C -> ( ( x i^i A ) vH B ) = ( ( C i^i A ) vH B ) ) |
6 |
|
ineq1 |
|- ( x = C -> ( x i^i ( A vH B ) ) = ( C i^i ( A vH B ) ) ) |
7 |
5 6
|
eqeq12d |
|- ( x = C -> ( ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) <-> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) ) ) |
8 |
3 7
|
imbi12d |
|- ( x = C -> ( ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) <-> ( B C_ C -> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) ) ) ) |
9 |
8
|
rspcv |
|- ( C e. CH -> ( A. x e. CH ( B C_ x -> ( ( x i^i A ) vH B ) = ( x i^i ( A vH B ) ) ) -> ( B C_ C -> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) ) ) ) |
10 |
2 9
|
sylan9 |
|- ( ( ( A e. CH /\ B e. CH ) /\ C e. CH ) -> ( A MH* B -> ( B C_ C -> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) ) ) ) |
11 |
10
|
3impa |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A MH* B -> ( B C_ C -> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) ) ) ) |
12 |
11
|
imp32 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH* B /\ B C_ C ) ) -> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) ) |