Metamath Proof Explorer


Theorem dmdi2

Description: Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Assertion dmdi2
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH* B /\ B C_ C ) ) -> ( C i^i ( A vH B ) ) C_ ( ( C i^i A ) vH B ) )

Proof

Step Hyp Ref Expression
1 dmdi
 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH* B /\ B C_ C ) ) -> ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) )
2 eqimss2
 |-  ( ( ( C i^i A ) vH B ) = ( C i^i ( A vH B ) ) -> ( C i^i ( A vH B ) ) C_ ( ( C i^i A ) vH B ) )
3 1 2 syl
 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH* B /\ B C_ C ) ) -> ( C i^i ( A vH B ) ) C_ ( ( C i^i A ) vH B ) )