Step |
Hyp |
Ref |
Expression |
1 |
|
dmdbr4 |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
2 |
1
|
biimpd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B -> A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) ) ) |
3 |
|
oveq1 |
|- ( x = C -> ( x vH B ) = ( C vH B ) ) |
4 |
3
|
ineq1d |
|- ( x = C -> ( ( x vH B ) i^i ( A vH B ) ) = ( ( C vH B ) i^i ( A vH B ) ) ) |
5 |
3
|
ineq1d |
|- ( x = C -> ( ( x vH B ) i^i A ) = ( ( C vH B ) i^i A ) ) |
6 |
5
|
oveq1d |
|- ( x = C -> ( ( ( x vH B ) i^i A ) vH B ) = ( ( ( C vH B ) i^i A ) vH B ) ) |
7 |
4 6
|
sseq12d |
|- ( x = C -> ( ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) <-> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) |
8 |
7
|
rspcv |
|- ( C e. CH -> ( A. x e. CH ( ( x vH B ) i^i ( A vH B ) ) C_ ( ( ( x vH B ) i^i A ) vH B ) -> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) |
9 |
2 8
|
sylan9 |
|- ( ( ( A e. CH /\ B e. CH ) /\ C e. CH ) -> ( A MH* B -> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) |
10 |
9
|
3impa |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A MH* B -> ( ( C vH B ) i^i ( A vH B ) ) C_ ( ( ( C vH B ) i^i A ) vH B ) ) ) |