Step |
Hyp |
Ref |
Expression |
1 |
|
dprdsplit.2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
2 |
|
dprdsplit.i |
|- ( ph -> ( C i^i D ) = (/) ) |
3 |
|
dprdsplit.u |
|- ( ph -> I = ( C u. D ) ) |
4 |
|
dmdprdsplit.z |
|- Z = ( Cntz ` G ) |
5 |
|
dmdprdsplit.0 |
|- .0. = ( 0g ` G ) |
6 |
|
simpr |
|- ( ( ph /\ G dom DProd S ) -> G dom DProd S ) |
7 |
1
|
fdmd |
|- ( ph -> dom S = I ) |
8 |
7
|
adantr |
|- ( ( ph /\ G dom DProd S ) -> dom S = I ) |
9 |
|
ssun1 |
|- C C_ ( C u. D ) |
10 |
3
|
adantr |
|- ( ( ph /\ G dom DProd S ) -> I = ( C u. D ) ) |
11 |
9 10
|
sseqtrrid |
|- ( ( ph /\ G dom DProd S ) -> C C_ I ) |
12 |
6 8 11
|
dprdres |
|- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
13 |
12
|
simpld |
|- ( ( ph /\ G dom DProd S ) -> G dom DProd ( S |` C ) ) |
14 |
|
ssun2 |
|- D C_ ( C u. D ) |
15 |
14 10
|
sseqtrrid |
|- ( ( ph /\ G dom DProd S ) -> D C_ I ) |
16 |
6 8 15
|
dprdres |
|- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
17 |
16
|
simpld |
|- ( ( ph /\ G dom DProd S ) -> G dom DProd ( S |` D ) ) |
18 |
13 17
|
jca |
|- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) ) |
19 |
2
|
adantr |
|- ( ( ph /\ G dom DProd S ) -> ( C i^i D ) = (/) ) |
20 |
6 8 11 15 19 4
|
dprdcntz2 |
|- ( ( ph /\ G dom DProd S ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
21 |
6 8 11 15 19 5
|
dprddisj2 |
|- ( ( ph /\ G dom DProd S ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
22 |
18 20 21
|
3jca |
|- ( ( ph /\ G dom DProd S ) -> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) |
23 |
1
|
adantr |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> S : I --> ( SubGrp ` G ) ) |
24 |
2
|
adantr |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( C i^i D ) = (/) ) |
25 |
3
|
adantr |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> I = ( C u. D ) ) |
26 |
|
simpr1l |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd ( S |` C ) ) |
27 |
|
simpr1r |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd ( S |` D ) ) |
28 |
|
simpr2 |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
29 |
|
simpr3 |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
30 |
23 24 25 4 5 26 27 28 29
|
dmdprdsplit2 |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd S ) |
31 |
22 30
|
impbida |
|- ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) ) |