| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdsplit.2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 2 |
|
dprdsplit.i |
|- ( ph -> ( C i^i D ) = (/) ) |
| 3 |
|
dprdsplit.u |
|- ( ph -> I = ( C u. D ) ) |
| 4 |
|
dmdprdsplit.z |
|- Z = ( Cntz ` G ) |
| 5 |
|
dmdprdsplit.0 |
|- .0. = ( 0g ` G ) |
| 6 |
|
simpr |
|- ( ( ph /\ G dom DProd S ) -> G dom DProd S ) |
| 7 |
1
|
fdmd |
|- ( ph -> dom S = I ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ G dom DProd S ) -> dom S = I ) |
| 9 |
|
ssun1 |
|- C C_ ( C u. D ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ G dom DProd S ) -> I = ( C u. D ) ) |
| 11 |
9 10
|
sseqtrrid |
|- ( ( ph /\ G dom DProd S ) -> C C_ I ) |
| 12 |
6 8 11
|
dprdres |
|- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 13 |
12
|
simpld |
|- ( ( ph /\ G dom DProd S ) -> G dom DProd ( S |` C ) ) |
| 14 |
|
ssun2 |
|- D C_ ( C u. D ) |
| 15 |
14 10
|
sseqtrrid |
|- ( ( ph /\ G dom DProd S ) -> D C_ I ) |
| 16 |
6 8 15
|
dprdres |
|- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 17 |
16
|
simpld |
|- ( ( ph /\ G dom DProd S ) -> G dom DProd ( S |` D ) ) |
| 18 |
13 17
|
jca |
|- ( ( ph /\ G dom DProd S ) -> ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ G dom DProd S ) -> ( C i^i D ) = (/) ) |
| 20 |
6 8 11 15 19 4
|
dprdcntz2 |
|- ( ( ph /\ G dom DProd S ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 21 |
6 8 11 15 19 5
|
dprddisj2 |
|- ( ( ph /\ G dom DProd S ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
| 22 |
18 20 21
|
3jca |
|- ( ( ph /\ G dom DProd S ) -> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) |
| 23 |
1
|
adantr |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> S : I --> ( SubGrp ` G ) ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( C i^i D ) = (/) ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> I = ( C u. D ) ) |
| 26 |
|
simpr1l |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd ( S |` C ) ) |
| 27 |
|
simpr1r |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd ( S |` D ) ) |
| 28 |
|
simpr2 |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 29 |
|
simpr3 |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) |
| 30 |
23 24 25 4 5 26 27 28 29
|
dmdprdsplit2 |
|- ( ( ph /\ ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) -> G dom DProd S ) |
| 31 |
22 30
|
impbida |
|- ( ph -> ( G dom DProd S <-> ( ( G dom DProd ( S |` C ) /\ G dom DProd ( S |` D ) ) /\ ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) /\ ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) ) ) |