| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdsplit.2 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdsplit.i | 
							 |-  ( ph -> ( C i^i D ) = (/) )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdsplit.u | 
							 |-  ( ph -> I = ( C u. D ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmdprdsplit.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							dmdprdsplit.0 | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							dmdprdsplit2.1 | 
							 |-  ( ph -> G dom DProd ( S |` C ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dmdprdsplit2.2 | 
							 |-  ( ph -> G dom DProd ( S |` D ) )  | 
						
						
							| 8 | 
							
								
							 | 
							dmdprdsplit2.3 | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dmdprdsplit2.4 | 
							 |-  ( ph -> ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = { .0. } ) | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dprdgrp | 
							 |-  ( G dom DProd ( S |` C ) -> G e. Grp )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 13 | 
							
								
							 | 
							ssun1 | 
							 |-  C C_ ( C u. D )  | 
						
						
							| 14 | 
							
								13 3
							 | 
							sseqtrrid | 
							 |-  ( ph -> C C_ I )  | 
						
						
							| 15 | 
							
								1 14
							 | 
							fssresd | 
							 |-  ( ph -> ( S |` C ) : C --> ( SubGrp ` G ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fdmd | 
							 |-  ( ph -> dom ( S |` C ) = C )  | 
						
						
							| 17 | 
							
								6 16
							 | 
							dprddomcld | 
							 |-  ( ph -> C e. _V )  | 
						
						
							| 18 | 
							
								
							 | 
							ssun2 | 
							 |-  D C_ ( C u. D )  | 
						
						
							| 19 | 
							
								18 3
							 | 
							sseqtrrid | 
							 |-  ( ph -> D C_ I )  | 
						
						
							| 20 | 
							
								1 19
							 | 
							fssresd | 
							 |-  ( ph -> ( S |` D ) : D --> ( SubGrp ` G ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							fdmd | 
							 |-  ( ph -> dom ( S |` D ) = D )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							dprddomcld | 
							 |-  ( ph -> D e. _V )  | 
						
						
							| 23 | 
							
								
							 | 
							unexg | 
							 |-  ( ( C e. _V /\ D e. _V ) -> ( C u. D ) e. _V )  | 
						
						
							| 24 | 
							
								17 22 23
							 | 
							syl2anc | 
							 |-  ( ph -> ( C u. D ) e. _V )  | 
						
						
							| 25 | 
							
								3 24
							 | 
							eqeltrd | 
							 |-  ( ph -> I e. _V )  | 
						
						
							| 26 | 
							
								3
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. I <-> x e. ( C u. D ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							elun | 
							 |-  ( x e. ( C u. D ) <-> ( x e. C \/ x e. D ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							bitrdi | 
							 |-  ( ph -> ( x e. I <-> ( x e. C \/ x e. D ) ) )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dmdprdsplit2lem | 
							 |-  ( ( ph /\ x e. C ) -> ( ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) ) | 
						
						
							| 30 | 
							
								
							 | 
							incom | 
							 |-  ( C i^i D ) = ( D i^i C )  | 
						
						
							| 31 | 
							
								30 2
							 | 
							eqtr3id | 
							 |-  ( ph -> ( D i^i C ) = (/) )  | 
						
						
							| 32 | 
							
								
							 | 
							uncom | 
							 |-  ( C u. D ) = ( D u. C )  | 
						
						
							| 33 | 
							
								3 32
							 | 
							eqtrdi | 
							 |-  ( ph -> I = ( D u. C ) )  | 
						
						
							| 34 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd ( S |` C ) -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 35 | 
							
								6 34
							 | 
							syl | 
							 |-  ( ph -> ( G DProd ( S |` C ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 36 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 37 | 
							
								7 36
							 | 
							syl | 
							 |-  ( ph -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) )  | 
						
						
							| 38 | 
							
								4 35 37 8
							 | 
							cntzrecd | 
							 |-  ( ph -> ( G DProd ( S |` D ) ) C_ ( Z ` ( G DProd ( S |` C ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							incom | 
							 |-  ( ( G DProd ( S |` C ) ) i^i ( G DProd ( S |` D ) ) ) = ( ( G DProd ( S |` D ) ) i^i ( G DProd ( S |` C ) ) )  | 
						
						
							| 40 | 
							
								39 9
							 | 
							eqtr3id | 
							 |-  ( ph -> ( ( G DProd ( S |` D ) ) i^i ( G DProd ( S |` C ) ) ) = { .0. } ) | 
						
						
							| 41 | 
							
								1 31 33 4 5 7 6 38 40 10
							 | 
							dmdprdsplit2lem | 
							 |-  ( ( ph /\ x e. D ) -> ( ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) ) | 
						
						
							| 42 | 
							
								29 41
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) ) | 
						
						
							| 43 | 
							
								42
							 | 
							simpld | 
							 |-  ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ex | 
							 |-  ( ph -> ( ( x e. C \/ x e. D ) -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								28 44
							 | 
							sylbid | 
							 |-  ( ph -> ( x e. I -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							3imp2 | 
							 |-  ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) )  | 
						
						
							| 47 | 
							
								28
							 | 
							biimpa | 
							 |-  ( ( ph /\ x e. I ) -> ( x e. C \/ x e. D ) )  | 
						
						
							| 48 | 
							
								29
							 | 
							simprd | 
							 |-  ( ( ph /\ x e. C ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) | 
						
						
							| 49 | 
							
								41
							 | 
							simprd | 
							 |-  ( ( ph /\ x e. D ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) | 
						
						
							| 50 | 
							
								48 49
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( x e. C \/ x e. D ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) | 
						
						
							| 51 | 
							
								47 50
							 | 
							syldan | 
							 |-  ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) | 
						
						
							| 52 | 
							
								4 5 10 12 25 1 46 51
							 | 
							dmdprdd | 
							 |-  ( ph -> G dom DProd S )  |