Metamath Proof Explorer


Theorem dmep

Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)

Ref Expression
Assertion dmep
|- dom _E = _V

Proof

Step Hyp Ref Expression
1 eqv
 |-  ( dom _E = _V <-> A. x x e. dom _E )
2 el
 |-  E. y x e. y
3 epel
 |-  ( x _E y <-> x e. y )
4 3 exbii
 |-  ( E. y x _E y <-> E. y x e. y )
5 2 4 mpbir
 |-  E. y x _E y
6 vex
 |-  x e. _V
7 6 eldm
 |-  ( x e. dom _E <-> E. y x _E y )
8 5 7 mpbir
 |-  x e. dom _E
9 1 8 mpgbir
 |-  dom _E = _V