Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dmep | |- dom _E = _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv | |- ( dom _E = _V <-> A. x x e. dom _E ) |
|
2 | el | |- E. y x e. y |
|
3 | epel | |- ( x _E y <-> x e. y ) |
|
4 | 3 | exbii | |- ( E. y x _E y <-> E. y x e. y ) |
5 | 2 4 | mpbir | |- E. y x _E y |
6 | vex | |- x e. _V |
|
7 | 6 | eldm | |- ( x e. dom _E <-> E. y x _E y ) |
8 | 5 7 | mpbir | |- x e. dom _E |
9 | 1 8 | mpgbir | |- dom _E = _V |