Metamath Proof Explorer


Theorem dmeq

Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion dmeq
|- ( A = B -> dom A = dom B )

Proof

Step Hyp Ref Expression
1 dmss
 |-  ( A C_ B -> dom A C_ dom B )
2 dmss
 |-  ( B C_ A -> dom B C_ dom A )
3 1 2 anim12i
 |-  ( ( A C_ B /\ B C_ A ) -> ( dom A C_ dom B /\ dom B C_ dom A ) )
4 eqss
 |-  ( A = B <-> ( A C_ B /\ B C_ A ) )
5 eqss
 |-  ( dom A = dom B <-> ( dom A C_ dom B /\ dom B C_ dom A ) )
6 3 4 5 3imtr4i
 |-  ( A = B -> dom A = dom B )