Description: Equality theorem for domain. (Contributed by NM, 11-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dmeq | |- ( A = B -> dom A = dom B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmss | |- ( A C_ B -> dom A C_ dom B ) |
|
2 | dmss | |- ( B C_ A -> dom B C_ dom A ) |
|
3 | 1 2 | anim12i | |- ( ( A C_ B /\ B C_ A ) -> ( dom A C_ dom B /\ dom B C_ dom A ) ) |
4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
5 | eqss | |- ( dom A = dom B <-> ( dom A C_ dom B /\ dom B C_ dom A ) ) |
|
6 | 3 4 5 | 3imtr4i | |- ( A = B -> dom A = dom B ) |