Step |
Hyp |
Ref |
Expression |
1 |
|
dfdm4 |
|- dom ( C i^i ( A X. B ) ) = ran `' ( C i^i ( A X. B ) ) |
2 |
|
cnvin |
|- `' ( C i^i ( A X. B ) ) = ( `' C i^i `' ( A X. B ) ) |
3 |
|
cnvxp |
|- `' ( A X. B ) = ( B X. A ) |
4 |
3
|
ineq2i |
|- ( `' C i^i `' ( A X. B ) ) = ( `' C i^i ( B X. A ) ) |
5 |
2 4
|
eqtri |
|- `' ( C i^i ( A X. B ) ) = ( `' C i^i ( B X. A ) ) |
6 |
5
|
rneqi |
|- ran `' ( C i^i ( A X. B ) ) = ran ( `' C i^i ( B X. A ) ) |
7 |
1 6
|
eqtri |
|- dom ( C i^i ( A X. B ) ) = ran ( `' C i^i ( B X. A ) ) |
8 |
7
|
eqeq1i |
|- ( dom ( C i^i ( A X. B ) ) = A <-> ran ( `' C i^i ( B X. A ) ) = A ) |
9 |
|
rninxp |
|- ( ran ( `' C i^i ( B X. A ) ) = A <-> A. x e. A E. y e. B y `' C x ) |
10 |
|
vex |
|- y e. _V |
11 |
|
vex |
|- x e. _V |
12 |
10 11
|
brcnv |
|- ( y `' C x <-> x C y ) |
13 |
12
|
rexbii |
|- ( E. y e. B y `' C x <-> E. y e. B x C y ) |
14 |
13
|
ralbii |
|- ( A. x e. A E. y e. B y `' C x <-> A. x e. A E. y e. B x C y ) |
15 |
8 9 14
|
3bitri |
|- ( dom ( C i^i ( A X. B ) ) = A <-> A. x e. A E. y e. B x C y ) |