| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfdm4 |  |-  dom ( C i^i ( A X. B ) ) = ran `' ( C i^i ( A X. B ) ) | 
						
							| 2 |  | cnvin |  |-  `' ( C i^i ( A X. B ) ) = ( `' C i^i `' ( A X. B ) ) | 
						
							| 3 |  | cnvxp |  |-  `' ( A X. B ) = ( B X. A ) | 
						
							| 4 | 3 | ineq2i |  |-  ( `' C i^i `' ( A X. B ) ) = ( `' C i^i ( B X. A ) ) | 
						
							| 5 | 2 4 | eqtri |  |-  `' ( C i^i ( A X. B ) ) = ( `' C i^i ( B X. A ) ) | 
						
							| 6 | 5 | rneqi |  |-  ran `' ( C i^i ( A X. B ) ) = ran ( `' C i^i ( B X. A ) ) | 
						
							| 7 | 1 6 | eqtri |  |-  dom ( C i^i ( A X. B ) ) = ran ( `' C i^i ( B X. A ) ) | 
						
							| 8 | 7 | eqeq1i |  |-  ( dom ( C i^i ( A X. B ) ) = A <-> ran ( `' C i^i ( B X. A ) ) = A ) | 
						
							| 9 |  | rninxp |  |-  ( ran ( `' C i^i ( B X. A ) ) = A <-> A. x e. A E. y e. B y `' C x ) | 
						
							| 10 |  | vex |  |-  y e. _V | 
						
							| 11 |  | vex |  |-  x e. _V | 
						
							| 12 | 10 11 | brcnv |  |-  ( y `' C x <-> x C y ) | 
						
							| 13 | 12 | rexbii |  |-  ( E. y e. B y `' C x <-> E. y e. B x C y ) | 
						
							| 14 | 13 | ralbii |  |-  ( A. x e. A E. y e. B y `' C x <-> A. x e. A E. y e. B x C y ) | 
						
							| 15 | 8 9 14 | 3bitri |  |-  ( dom ( C i^i ( A X. B ) ) = A <-> A. x e. A E. y e. B x C y ) |