| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmmcand.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | dmmcand.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | dmmcand.c |  |-  ( ph -> C e. CC ) | 
						
							| 4 |  | dmmcand.bn0 |  |-  ( ph -> B =/= 0 ) | 
						
							| 5 | 2 3 | mulcld |  |-  ( ph -> ( B x. C ) e. CC ) | 
						
							| 6 | 1 2 5 4 | div32d |  |-  ( ph -> ( ( A / B ) x. ( B x. C ) ) = ( A x. ( ( B x. C ) / B ) ) ) | 
						
							| 7 | 3 2 4 | divcan3d |  |-  ( ph -> ( ( B x. C ) / B ) = C ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ph -> ( A x. ( ( B x. C ) / B ) ) = ( A x. C ) ) | 
						
							| 9 |  | eqidd |  |-  ( ph -> ( A x. C ) = ( A x. C ) ) | 
						
							| 10 | 6 8 9 | 3eqtrd |  |-  ( ph -> ( ( A / B ) x. ( B x. C ) ) = ( A x. C ) ) |