Metamath Proof Explorer


Theorem dmmpog

Description: Domain of an operation given by the maps-to notation, closed form of dmmpo . Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017) (Proof shortened by AV, 10-Feb-2019)

Ref Expression
Hypothesis dmmpog.f
|- F = ( x e. A , y e. B |-> C )
Assertion dmmpog
|- ( C e. V -> dom F = ( A X. B ) )

Proof

Step Hyp Ref Expression
1 dmmpog.f
 |-  F = ( x e. A , y e. B |-> C )
2 simpl
 |-  ( ( C e. V /\ ( x e. A /\ y e. B ) ) -> C e. V )
3 2 ralrimivva
 |-  ( C e. V -> A. x e. A A. y e. B C e. V )
4 1 dmmpoga
 |-  ( A. x e. A A. y e. B C e. V -> dom F = ( A X. B ) )
5 3 4 syl
 |-  ( C e. V -> dom F = ( A X. B ) )