Description: Domain of an operation given by the maps-to notation, closed form of dmmpo . Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017) (Proof shortened by AV, 10-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dmmpog.f | |- F = ( x e. A , y e. B |-> C ) |
|
Assertion | dmmpog | |- ( C e. V -> dom F = ( A X. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpog.f | |- F = ( x e. A , y e. B |-> C ) |
|
2 | simpl | |- ( ( C e. V /\ ( x e. A /\ y e. B ) ) -> C e. V ) |
|
3 | 2 | ralrimivva | |- ( C e. V -> A. x e. A A. y e. B C e. V ) |
4 | 1 | dmmpoga | |- ( A. x e. A A. y e. B C e. V -> dom F = ( A X. B ) ) |
5 | 3 4 | syl | |- ( C e. V -> dom F = ( A X. B ) ) |