Metamath Proof Explorer


Theorem dmmpoga

Description: Domain of an operation given by the maps-to notation, closed form of dmmpo . (Contributed by Alexander van der Vekens, 10-Feb-2019) (Proof shortened by Lammen, 29-May-2024)

Ref Expression
Hypothesis dmmpog.f
|- F = ( x e. A , y e. B |-> C )
Assertion dmmpoga
|- ( A. x e. A A. y e. B C e. V -> dom F = ( A X. B ) )

Proof

Step Hyp Ref Expression
1 dmmpog.f
 |-  F = ( x e. A , y e. B |-> C )
2 1 fnmpo
 |-  ( A. x e. A A. y e. B C e. V -> F Fn ( A X. B ) )
3 2 fndmd
 |-  ( A. x e. A A. y e. B C e. V -> dom F = ( A X. B ) )