Metamath Proof Explorer


Theorem dmmpogaOLD

Description: Obsolete version of dmmpoga as of 29-May-2024. (Contributed by Alexander van der Vekens, 10-Feb-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis dmmpog.f
|- F = ( x e. A , y e. B |-> C )
Assertion dmmpogaOLD
|- ( A. x e. A A. y e. B C e. V -> dom F = ( A X. B ) )

Proof

Step Hyp Ref Expression
1 dmmpog.f
 |-  F = ( x e. A , y e. B |-> C )
2 1 fnmpo
 |-  ( A. x e. A A. y e. B C e. V -> F Fn ( A X. B ) )
3 fndm
 |-  ( F Fn ( A X. B ) -> dom F = ( A X. B ) )
4 2 3 syl
 |-  ( A. x e. A A. y e. B C e. V -> dom F = ( A X. B ) )