Metamath Proof Explorer


Theorem dmmpt

Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 22-Mar-2015)

Ref Expression
Hypothesis dmmpt.1
|- F = ( x e. A |-> B )
Assertion dmmpt
|- dom F = { x e. A | B e. _V }

Proof

Step Hyp Ref Expression
1 dmmpt.1
 |-  F = ( x e. A |-> B )
2 dfdm4
 |-  dom F = ran `' F
3 dfrn4
 |-  ran `' F = ( `' F " _V )
4 1 mptpreima
 |-  ( `' F " _V ) = { x e. A | B e. _V }
5 2 3 4 3eqtri
 |-  dom F = { x e. A | B e. _V }