Metamath Proof Explorer


Theorem dmmpt1

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses dmmpt1.x
|- F/ x ph
dmmpt1.1
|- F/_ x B
dmmpt1.c
|- ( ( ph /\ x e. B ) -> C e. V )
Assertion dmmpt1
|- ( ph -> dom ( x e. B |-> C ) = B )

Proof

Step Hyp Ref Expression
1 dmmpt1.x
 |-  F/ x ph
2 dmmpt1.1
 |-  F/_ x B
3 dmmpt1.c
 |-  ( ( ph /\ x e. B ) -> C e. V )
4 eqid
 |-  ( x e. B |-> C ) = ( x e. B |-> C )
5 1 2 4 3 dmmptdff
 |-  ( ph -> dom ( x e. B |-> C ) = B )