Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmmptd.a | |- A = ( x e. B |-> C ) |
|
dmmptd.c | |- ( ( ph /\ x e. B ) -> C e. V ) |
||
Assertion | dmmptd | |- ( ph -> dom A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptd.a | |- A = ( x e. B |-> C ) |
|
2 | dmmptd.c | |- ( ( ph /\ x e. B ) -> C e. V ) |
|
3 | 1 | dmmpt | |- dom A = { x e. B | C e. _V } |
4 | 2 | elexd | |- ( ( ph /\ x e. B ) -> C e. _V ) |
5 | 4 | ralrimiva | |- ( ph -> A. x e. B C e. _V ) |
6 | rabid2 | |- ( B = { x e. B | C e. _V } <-> A. x e. B C e. _V ) |
|
7 | 5 6 | sylibr | |- ( ph -> B = { x e. B | C e. _V } ) |
8 | 3 7 | eqtr4id | |- ( ph -> dom A = B ) |