Metamath Proof Explorer


Theorem dmmptdf

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmmptdf.x
|- F/ x ph
dmmptdf.a
|- A = ( x e. B |-> C )
dmmptdf.c
|- ( ( ph /\ x e. B ) -> C e. V )
Assertion dmmptdf
|- ( ph -> dom A = B )

Proof

Step Hyp Ref Expression
1 dmmptdf.x
 |-  F/ x ph
2 dmmptdf.a
 |-  A = ( x e. B |-> C )
3 dmmptdf.c
 |-  ( ( ph /\ x e. B ) -> C e. V )
4 nfcv
 |-  F/_ x B
5 1 4 2 3 dmmptdff
 |-  ( ph -> dom A = B )