Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmmptdf.x | |- F/ x ph |
|
dmmptdf.a | |- A = ( x e. B |-> C ) |
||
dmmptdf.c | |- ( ( ph /\ x e. B ) -> C e. V ) |
||
Assertion | dmmptdf | |- ( ph -> dom A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptdf.x | |- F/ x ph |
|
2 | dmmptdf.a | |- A = ( x e. B |-> C ) |
|
3 | dmmptdf.c | |- ( ( ph /\ x e. B ) -> C e. V ) |
|
4 | 2 | dmmpt | |- dom A = { x e. B | C e. _V } |
5 | 3 | elexd | |- ( ( ph /\ x e. B ) -> C e. _V ) |
6 | 1 5 | ralrimia | |- ( ph -> A. x e. B C e. _V ) |
7 | rabid2 | |- ( B = { x e. B | C e. _V } <-> A. x e. B C e. _V ) |
|
8 | 6 7 | sylibr | |- ( ph -> B = { x e. B | C e. _V } ) |
9 | 4 8 | eqtr4id | |- ( ph -> dom A = B ) |