Metamath Proof Explorer


Theorem dmmptdf

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses dmmptdf.x
|- F/ x ph
dmmptdf.a
|- A = ( x e. B |-> C )
dmmptdf.c
|- ( ( ph /\ x e. B ) -> C e. V )
Assertion dmmptdf
|- ( ph -> dom A = B )

Proof

Step Hyp Ref Expression
1 dmmptdf.x
 |-  F/ x ph
2 dmmptdf.a
 |-  A = ( x e. B |-> C )
3 dmmptdf.c
 |-  ( ( ph /\ x e. B ) -> C e. V )
4 2 dmmpt
 |-  dom A = { x e. B | C e. _V }
5 3 elexd
 |-  ( ( ph /\ x e. B ) -> C e. _V )
6 1 5 ralrimia
 |-  ( ph -> A. x e. B C e. _V )
7 rabid2
 |-  ( B = { x e. B | C e. _V } <-> A. x e. B C e. _V )
8 6 7 sylibr
 |-  ( ph -> B = { x e. B | C e. _V } )
9 4 8 eqtr4id
 |-  ( ph -> dom A = B )