Metamath Proof Explorer


Theorem dmmptdf2

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses dmmptdf2.x
|- F/ x ph
dmmptdf2.b
|- F/_ x B
dmmptdf2.a
|- A = ( x e. B |-> C )
dmmptdf2.c
|- ( ( ph /\ x e. B ) -> C e. V )
Assertion dmmptdf2
|- ( ph -> dom A = B )

Proof

Step Hyp Ref Expression
1 dmmptdf2.x
 |-  F/ x ph
2 dmmptdf2.b
 |-  F/_ x B
3 dmmptdf2.a
 |-  A = ( x e. B |-> C )
4 dmmptdf2.c
 |-  ( ( ph /\ x e. B ) -> C e. V )
5 3 dmmpt
 |-  dom A = { x e. B | C e. _V }
6 4 elexd
 |-  ( ( ph /\ x e. B ) -> C e. _V )
7 1 6 ralrimia
 |-  ( ph -> A. x e. B C e. _V )
8 2 rabid2f
 |-  ( B = { x e. B | C e. _V } <-> A. x e. B C e. _V )
9 7 8 sylibr
 |-  ( ph -> B = { x e. B | C e. _V } )
10 5 9 eqtr4id
 |-  ( ph -> dom A = B )