Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 21-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmmptdff.x | |- F/ x ph |
|
| dmmptdff.1 | |- F/_ x B |
||
| dmmptdff.a | |- A = ( x e. B |-> C ) |
||
| dmmptdff.c | |- ( ( ph /\ x e. B ) -> C e. V ) |
||
| Assertion | dmmptdff | |- ( ph -> dom A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptdff.x | |- F/ x ph |
|
| 2 | dmmptdff.1 | |- F/_ x B |
|
| 3 | dmmptdff.a | |- A = ( x e. B |-> C ) |
|
| 4 | dmmptdff.c | |- ( ( ph /\ x e. B ) -> C e. V ) |
|
| 5 | 3 | dmmpt | |- dom A = { x e. B | C e. _V } |
| 6 | 4 | elexd | |- ( ( ph /\ x e. B ) -> C e. _V ) |
| 7 | 1 6 | ralrimia | |- ( ph -> A. x e. B C e. _V ) |
| 8 | 2 | rabid2f | |- ( B = { x e. B | C e. _V } <-> A. x e. B C e. _V ) |
| 9 | 7 8 | sylibr | |- ( ph -> B = { x e. B | C e. _V } ) |
| 10 | 5 9 | eqtr4id | |- ( ph -> dom A = B ) |