Metamath Proof Explorer


Theorem dmmzp

Description: mzPoly is defined for all index sets which are sets. This is used with elfvdm to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion dmmzp
|- dom mzPoly = _V

Proof

Step Hyp Ref Expression
1 df-mzp
 |-  mzPoly = ( v e. _V |-> |^| ( mzPolyCld ` v ) )
2 1 dmeqi
 |-  dom mzPoly = dom ( v e. _V |-> |^| ( mzPolyCld ` v ) )
3 dmmptg
 |-  ( A. v e. _V |^| ( mzPolyCld ` v ) e. _V -> dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) = _V )
4 mzpcln0
 |-  ( v e. _V -> ( mzPolyCld ` v ) =/= (/) )
5 intex
 |-  ( ( mzPolyCld ` v ) =/= (/) <-> |^| ( mzPolyCld ` v ) e. _V )
6 4 5 sylib
 |-  ( v e. _V -> |^| ( mzPolyCld ` v ) e. _V )
7 3 6 mprg
 |-  dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) = _V
8 2 7 eqtri
 |-  dom mzPoly = _V