Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dmopabel.d | |- ( x = X -> ( ph <-> ps ) ) | |
| Assertion | dmopabelb | |- ( X e. V -> ( X e. dom { <. x , y >. | ph } <-> E. y ps ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmopabel.d | |- ( x = X -> ( ph <-> ps ) ) | |
| 2 | dmopab |  |-  dom { <. x , y >. | ph } = { x | E. y ph } | |
| 3 | 2 | eleq2i |  |-  ( X e. dom { <. x , y >. | ph } <-> X e. { x | E. y ph } ) | 
| 4 | 1 | exbidv | |- ( x = X -> ( E. y ph <-> E. y ps ) ) | 
| 5 | eqid |  |-  { x | E. y ph } = { x | E. y ph } | |
| 6 | 4 5 | elab2g |  |-  ( X e. V -> ( X e. { x | E. y ph } <-> E. y ps ) ) | 
| 7 | 3 6 | bitrid |  |-  ( X e. V -> ( X e. dom { <. x , y >. | ph } <-> E. y ps ) ) |