Metamath Proof Explorer


Theorem dmprop

Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses dmsnop.1
|- B e. _V
dmprop.1
|- D e. _V
Assertion dmprop
|- dom { <. A , B >. , <. C , D >. } = { A , C }

Proof

Step Hyp Ref Expression
1 dmsnop.1
 |-  B e. _V
2 dmprop.1
 |-  D e. _V
3 dmpropg
 |-  ( ( B e. _V /\ D e. _V ) -> dom { <. A , B >. , <. C , D >. } = { A , C } )
4 1 2 3 mp2an
 |-  dom { <. A , B >. , <. C , D >. } = { A , C }