| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmrelrnrel.x | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							dmrelrnrel.y | 
							 |-  F/ y ph  | 
						
						
							| 3 | 
							
								
							 | 
							dmrelrnrel.i | 
							 |-  ( ph -> A. x e. A A. y e. A ( x R y -> ( F ` x ) S ( F ` y ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmrelrnrel.b | 
							 |-  ( ph -> B e. A )  | 
						
						
							| 5 | 
							
								
							 | 
							dmrelrnrel.c | 
							 |-  ( ph -> C e. A )  | 
						
						
							| 6 | 
							
								
							 | 
							dmrelrnrel.r | 
							 |-  ( ph -> B R C )  | 
						
						
							| 7 | 
							
								
							 | 
							id | 
							 |-  ( ph -> ph )  | 
						
						
							| 8 | 
							
								7 4 5
							 | 
							jca31 | 
							 |-  ( ph -> ( ( ph /\ B e. A ) /\ C e. A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nfv | 
							 |-  F/ y B e. A  | 
						
						
							| 10 | 
							
								2 9
							 | 
							nfan | 
							 |-  F/ y ( ph /\ B e. A )  | 
						
						
							| 11 | 
							
								
							 | 
							nfv | 
							 |-  F/ y C e. A  | 
						
						
							| 12 | 
							
								10 11
							 | 
							nfan | 
							 |-  F/ y ( ( ph /\ B e. A ) /\ C e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							nfv | 
							 |-  F/ y ( B R C -> ( F ` B ) S ( F ` C ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							nfim | 
							 |-  F/ y ( ( ( ph /\ B e. A ) /\ C e. A ) -> ( B R C -> ( F ` B ) S ( F ` C ) ) )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							nfim | 
							 |-  F/ y ( B e. A -> ( ( ( ph /\ B e. A ) /\ C e. A ) -> ( B R C -> ( F ` B ) S ( F ` C ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eleq1 | 
							 |-  ( y = C -> ( y e. A <-> C e. A ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							 |-  ( y = C -> ( ( ( ph /\ B e. A ) /\ y e. A ) <-> ( ( ph /\ B e. A ) /\ C e. A ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							breq2 | 
							 |-  ( y = C -> ( B R y <-> B R C ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = C -> ( F ` y ) = ( F ` C ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							breq2d | 
							 |-  ( y = C -> ( ( F ` B ) S ( F ` y ) <-> ( F ` B ) S ( F ` C ) ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							imbi12d | 
							 |-  ( y = C -> ( ( B R y -> ( F ` B ) S ( F ` y ) ) <-> ( B R C -> ( F ` B ) S ( F ` C ) ) ) )  | 
						
						
							| 22 | 
							
								17 21
							 | 
							imbi12d | 
							 |-  ( y = C -> ( ( ( ( ph /\ B e. A ) /\ y e. A ) -> ( B R y -> ( F ` B ) S ( F ` y ) ) ) <-> ( ( ( ph /\ B e. A ) /\ C e. A ) -> ( B R C -> ( F ` B ) S ( F ` C ) ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							imbi2d | 
							 |-  ( y = C -> ( ( B e. A -> ( ( ( ph /\ B e. A ) /\ y e. A ) -> ( B R y -> ( F ` B ) S ( F ` y ) ) ) ) <-> ( B e. A -> ( ( ( ph /\ B e. A ) /\ C e. A ) -> ( B R C -> ( F ` B ) S ( F ` C ) ) ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							nfv | 
							 |-  F/ x B e. A  | 
						
						
							| 25 | 
							
								1 24
							 | 
							nfan | 
							 |-  F/ x ( ph /\ B e. A )  | 
						
						
							| 26 | 
							
								
							 | 
							nfv | 
							 |-  F/ x y e. A  | 
						
						
							| 27 | 
							
								25 26
							 | 
							nfan | 
							 |-  F/ x ( ( ph /\ B e. A ) /\ y e. A )  | 
						
						
							| 28 | 
							
								
							 | 
							nfv | 
							 |-  F/ x ( B R y -> ( F ` B ) S ( F ` y ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							nfim | 
							 |-  F/ x ( ( ( ph /\ B e. A ) /\ y e. A ) -> ( B R y -> ( F ` B ) S ( F ` y ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = B -> ( x e. A <-> B e. A ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anbi2d | 
							 |-  ( x = B -> ( ( ph /\ x e. A ) <-> ( ph /\ B e. A ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							anbi1d | 
							 |-  ( x = B -> ( ( ( ph /\ x e. A ) /\ y e. A ) <-> ( ( ph /\ B e. A ) /\ y e. A ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							breq1 | 
							 |-  ( x = B -> ( x R y <-> B R y ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = B -> ( F ` x ) = ( F ` B ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							breq1d | 
							 |-  ( x = B -> ( ( F ` x ) S ( F ` y ) <-> ( F ` B ) S ( F ` y ) ) )  | 
						
						
							| 36 | 
							
								33 35
							 | 
							imbi12d | 
							 |-  ( x = B -> ( ( x R y -> ( F ` x ) S ( F ` y ) ) <-> ( B R y -> ( F ` B ) S ( F ` y ) ) ) )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							imbi12d | 
							 |-  ( x = B -> ( ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( x R y -> ( F ` x ) S ( F ` y ) ) ) <-> ( ( ( ph /\ B e. A ) /\ y e. A ) -> ( B R y -> ( F ` B ) S ( F ` y ) ) ) ) )  | 
						
						
							| 38 | 
							
								3
							 | 
							r19.21bi | 
							 |-  ( ( ph /\ x e. A ) -> A. y e. A ( x R y -> ( F ` x ) S ( F ` y ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							r19.21bi | 
							 |-  ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( x R y -> ( F ` x ) S ( F ` y ) ) )  | 
						
						
							| 40 | 
							
								29 37 39
							 | 
							vtoclg1f | 
							 |-  ( B e. A -> ( ( ( ph /\ B e. A ) /\ y e. A ) -> ( B R y -> ( F ` B ) S ( F ` y ) ) ) )  | 
						
						
							| 41 | 
							
								15 23 40
							 | 
							vtoclg1f | 
							 |-  ( C e. A -> ( B e. A -> ( ( ( ph /\ B e. A ) /\ C e. A ) -> ( B R C -> ( F ` B ) S ( F ` C ) ) ) ) )  | 
						
						
							| 42 | 
							
								5 4 41
							 | 
							sylc | 
							 |-  ( ph -> ( ( ( ph /\ B e. A ) /\ C e. A ) -> ( B R C -> ( F ` B ) S ( F ` C ) ) ) )  | 
						
						
							| 43 | 
							
								8 6 42
							 | 
							mp2d | 
							 |-  ( ph -> ( F ` B ) S ( F ` C ) )  |