Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmressnsn | |- ( A e. dom F -> dom ( F |` { A } ) = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres | |- dom ( F |` { A } ) = ( { A } i^i dom F ) |
|
| 2 | snssi | |- ( A e. dom F -> { A } C_ dom F ) |
|
| 3 | dfss2 | |- ( { A } C_ dom F <-> ( { A } i^i dom F ) = { A } ) |
|
| 4 | 2 3 | sylib | |- ( A e. dom F -> ( { A } i^i dom F ) = { A } ) |
| 5 | 1 4 | eqtrid | |- ( A e. dom F -> dom ( F |` { A } ) = { A } ) |