Metamath Proof Explorer


Theorem dmressnsn

Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion dmressnsn
|- ( A e. dom F -> dom ( F |` { A } ) = { A } )

Proof

Step Hyp Ref Expression
1 dmres
 |-  dom ( F |` { A } ) = ( { A } i^i dom F )
2 snssi
 |-  ( A e. dom F -> { A } C_ dom F )
3 df-ss
 |-  ( { A } C_ dom F <-> ( { A } i^i dom F ) = { A } )
4 2 3 sylib
 |-  ( A e. dom F -> ( { A } i^i dom F ) = { A } )
5 1 4 eqtrid
 |-  ( A e. dom F -> dom ( F |` { A } ) = { A } )