Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | dmsn0 | |- dom { (/) } = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp | |- -. (/) e. ( _V X. _V ) |
|
2 | dmsnn0 | |- ( (/) e. ( _V X. _V ) <-> dom { (/) } =/= (/) ) |
|
3 | 2 | necon2bbii | |- ( dom { (/) } = (/) <-> -. (/) e. ( _V X. _V ) ) |
4 | 1 3 | mpbir | |- dom { (/) } = (/) |