Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsn0el | |- ( (/) e. A -> dom { A } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnn0 | |- ( A e. ( _V X. _V ) <-> dom { A } =/= (/) ) |
|
| 2 | 0nelelxp | |- ( A e. ( _V X. _V ) -> -. (/) e. A ) |
|
| 3 | 1 2 | sylbir | |- ( dom { A } =/= (/) -> -. (/) e. A ) |
| 4 | 3 | necon4ai | |- ( (/) e. A -> dom { A } = (/) ) |