Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | dmsn0el | |- ( (/) e. A -> dom { A } = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnn0 | |- ( A e. ( _V X. _V ) <-> dom { A } =/= (/) ) |
|
2 | 0nelelxp | |- ( A e. ( _V X. _V ) -> -. (/) e. A ) |
|
3 | 1 2 | sylbir | |- ( dom { A } =/= (/) -> -. (/) e. A ) |
4 | 3 | necon4ai | |- ( (/) e. A -> dom { A } = (/) ) |