| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- x e. _V |
| 2 |
1
|
eldm |
|- ( x e. dom { A } <-> E. y x { A } y ) |
| 3 |
|
df-br |
|- ( x { A } y <-> <. x , y >. e. { A } ) |
| 4 |
|
opex |
|- <. x , y >. e. _V |
| 5 |
4
|
elsn |
|- ( <. x , y >. e. { A } <-> <. x , y >. = A ) |
| 6 |
|
eqcom |
|- ( <. x , y >. = A <-> A = <. x , y >. ) |
| 7 |
3 5 6
|
3bitri |
|- ( x { A } y <-> A = <. x , y >. ) |
| 8 |
7
|
exbii |
|- ( E. y x { A } y <-> E. y A = <. x , y >. ) |
| 9 |
2 8
|
bitr2i |
|- ( E. y A = <. x , y >. <-> x e. dom { A } ) |
| 10 |
9
|
exbii |
|- ( E. x E. y A = <. x , y >. <-> E. x x e. dom { A } ) |
| 11 |
|
elvv |
|- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
| 12 |
|
n0 |
|- ( dom { A } =/= (/) <-> E. x x e. dom { A } ) |
| 13 |
10 11 12
|
3bitr4i |
|- ( A e. ( _V X. _V ) <-> dom { A } =/= (/) ) |