Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dmsnop.1 | |- B e. _V |
|
Assertion | dmsnop | |- dom { <. A , B >. } = { A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnop.1 | |- B e. _V |
|
2 | dmsnopg | |- ( B e. _V -> dom { <. A , B >. } = { A } ) |
|
3 | 1 2 | ax-mp | |- dom { <. A , B >. } = { A } |