Metamath Proof Explorer


Theorem dmsnop

Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis dmsnop.1
|- B e. _V
Assertion dmsnop
|- dom { <. A , B >. } = { A }

Proof

Step Hyp Ref Expression
1 dmsnop.1
 |-  B e. _V
2 dmsnopg
 |-  ( B e. _V -> dom { <. A , B >. } = { A } )
3 1 2 ax-mp
 |-  dom { <. A , B >. } = { A }