Metamath Proof Explorer


Theorem dmsnopg

Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion dmsnopg
|- ( B e. V -> dom { <. A , B >. } = { A } )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 vex
 |-  y e. _V
3 1 2 opth1
 |-  ( <. x , y >. = <. A , B >. -> x = A )
4 3 exlimiv
 |-  ( E. y <. x , y >. = <. A , B >. -> x = A )
5 opeq1
 |-  ( x = A -> <. x , B >. = <. A , B >. )
6 opeq2
 |-  ( y = B -> <. x , y >. = <. x , B >. )
7 6 eqeq1d
 |-  ( y = B -> ( <. x , y >. = <. A , B >. <-> <. x , B >. = <. A , B >. ) )
8 7 spcegv
 |-  ( B e. V -> ( <. x , B >. = <. A , B >. -> E. y <. x , y >. = <. A , B >. ) )
9 5 8 syl5
 |-  ( B e. V -> ( x = A -> E. y <. x , y >. = <. A , B >. ) )
10 4 9 impbid2
 |-  ( B e. V -> ( E. y <. x , y >. = <. A , B >. <-> x = A ) )
11 1 eldm2
 |-  ( x e. dom { <. A , B >. } <-> E. y <. x , y >. e. { <. A , B >. } )
12 opex
 |-  <. x , y >. e. _V
13 12 elsn
 |-  ( <. x , y >. e. { <. A , B >. } <-> <. x , y >. = <. A , B >. )
14 13 exbii
 |-  ( E. y <. x , y >. e. { <. A , B >. } <-> E. y <. x , y >. = <. A , B >. )
15 11 14 bitri
 |-  ( x e. dom { <. A , B >. } <-> E. y <. x , y >. = <. A , B >. )
16 velsn
 |-  ( x e. { A } <-> x = A )
17 10 15 16 3bitr4g
 |-  ( B e. V -> ( x e. dom { <. A , B >. } <-> x e. { A } ) )
18 17 eqrdv
 |-  ( B e. V -> dom { <. A , B >. } = { A } )