Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
|
vex |
|- y e. _V |
3 |
1 2
|
opth1 |
|- ( <. x , y >. = <. A , B >. -> x = A ) |
4 |
3
|
exlimiv |
|- ( E. y <. x , y >. = <. A , B >. -> x = A ) |
5 |
|
opeq1 |
|- ( x = A -> <. x , B >. = <. A , B >. ) |
6 |
|
opeq2 |
|- ( y = B -> <. x , y >. = <. x , B >. ) |
7 |
6
|
eqeq1d |
|- ( y = B -> ( <. x , y >. = <. A , B >. <-> <. x , B >. = <. A , B >. ) ) |
8 |
7
|
spcegv |
|- ( B e. V -> ( <. x , B >. = <. A , B >. -> E. y <. x , y >. = <. A , B >. ) ) |
9 |
5 8
|
syl5 |
|- ( B e. V -> ( x = A -> E. y <. x , y >. = <. A , B >. ) ) |
10 |
4 9
|
impbid2 |
|- ( B e. V -> ( E. y <. x , y >. = <. A , B >. <-> x = A ) ) |
11 |
1
|
eldm2 |
|- ( x e. dom { <. A , B >. } <-> E. y <. x , y >. e. { <. A , B >. } ) |
12 |
|
opex |
|- <. x , y >. e. _V |
13 |
12
|
elsn |
|- ( <. x , y >. e. { <. A , B >. } <-> <. x , y >. = <. A , B >. ) |
14 |
13
|
exbii |
|- ( E. y <. x , y >. e. { <. A , B >. } <-> E. y <. x , y >. = <. A , B >. ) |
15 |
11 14
|
bitri |
|- ( x e. dom { <. A , B >. } <-> E. y <. x , y >. = <. A , B >. ) |
16 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
17 |
10 15 16
|
3bitr4g |
|- ( B e. V -> ( x e. dom { <. A , B >. } <-> x e. { A } ) ) |
18 |
17
|
eqrdv |
|- ( B e. V -> dom { <. A , B >. } = { A } ) |