Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dmss | |- ( A C_ B -> dom A C_ dom B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |- ( A C_ B -> ( <. x , y >. e. A -> <. x , y >. e. B ) ) |
|
2 | 1 | eximdv | |- ( A C_ B -> ( E. y <. x , y >. e. A -> E. y <. x , y >. e. B ) ) |
3 | vex | |- x e. _V |
|
4 | 3 | eldm2 | |- ( x e. dom A <-> E. y <. x , y >. e. A ) |
5 | 3 | eldm2 | |- ( x e. dom B <-> E. y <. x , y >. e. B ) |
6 | 2 4 5 | 3imtr4g | |- ( A C_ B -> ( x e. dom A -> x e. dom B ) ) |
7 | 6 | ssrdv | |- ( A C_ B -> dom A C_ dom B ) |