| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nelxp |  |-  -. (/) e. ( _V X. _V ) | 
						
							| 2 |  | ssel |  |-  ( dom F C_ ( _V X. _V ) -> ( (/) e. dom F -> (/) e. ( _V X. _V ) ) ) | 
						
							| 3 | 1 2 | mtoi |  |-  ( dom F C_ ( _V X. _V ) -> -. (/) e. dom F ) | 
						
							| 4 |  | df-rel |  |-  ( Rel dom F <-> dom F C_ ( _V X. _V ) ) | 
						
							| 5 |  | reldmtpos |  |-  ( Rel dom tpos F <-> -. (/) e. dom F ) | 
						
							| 6 | 3 4 5 | 3imtr4i |  |-  ( Rel dom F -> Rel dom tpos F ) | 
						
							| 7 |  | relcnv |  |-  Rel `' dom F | 
						
							| 8 | 6 7 | jctir |  |-  ( Rel dom F -> ( Rel dom tpos F /\ Rel `' dom F ) ) | 
						
							| 9 |  | vex |  |-  z e. _V | 
						
							| 10 |  | brtpos |  |-  ( z e. _V -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) | 
						
							| 11 | 9 10 | mp1i |  |-  ( Rel dom F -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) | 
						
							| 12 | 11 | exbidv |  |-  ( Rel dom F -> ( E. z <. x , y >. tpos F z <-> E. z <. y , x >. F z ) ) | 
						
							| 13 |  | opex |  |-  <. x , y >. e. _V | 
						
							| 14 | 13 | eldm |  |-  ( <. x , y >. e. dom tpos F <-> E. z <. x , y >. tpos F z ) | 
						
							| 15 |  | vex |  |-  x e. _V | 
						
							| 16 |  | vex |  |-  y e. _V | 
						
							| 17 | 15 16 | opelcnv |  |-  ( <. x , y >. e. `' dom F <-> <. y , x >. e. dom F ) | 
						
							| 18 |  | opex |  |-  <. y , x >. e. _V | 
						
							| 19 | 18 | eldm |  |-  ( <. y , x >. e. dom F <-> E. z <. y , x >. F z ) | 
						
							| 20 | 17 19 | bitri |  |-  ( <. x , y >. e. `' dom F <-> E. z <. y , x >. F z ) | 
						
							| 21 | 12 14 20 | 3bitr4g |  |-  ( Rel dom F -> ( <. x , y >. e. dom tpos F <-> <. x , y >. e. `' dom F ) ) | 
						
							| 22 | 21 | eqrelrdv2 |  |-  ( ( ( Rel dom tpos F /\ Rel `' dom F ) /\ Rel dom F ) -> dom tpos F = `' dom F ) | 
						
							| 23 | 8 22 | mpancom |  |-  ( Rel dom F -> dom tpos F = `' dom F ) |