| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ttrcl |  |-  t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } | 
						
							| 2 | 1 | dmeqi |  |-  dom t++ R = dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } | 
						
							| 3 |  | dmopab |  |-  dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } | 
						
							| 4 | 2 3 | eqtri |  |-  dom t++ R = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } | 
						
							| 5 |  | simpr2l |  |-  ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) | 
						
							| 6 |  | fveq2 |  |-  ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) | 
						
							| 7 |  | suceq |  |-  ( a = (/) -> suc a = suc (/) ) | 
						
							| 8 |  | df-1o |  |-  1o = suc (/) | 
						
							| 9 | 7 8 | eqtr4di |  |-  ( a = (/) -> suc a = 1o ) | 
						
							| 10 | 9 | fveq2d |  |-  ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) | 
						
							| 11 | 6 10 | breq12d |  |-  ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) | 
						
							| 12 |  | simpr3 |  |-  ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. n ( f ` a ) R ( f ` suc a ) ) | 
						
							| 13 |  | eldif |  |-  ( n e. ( _om \ 1o ) <-> ( n e. _om /\ -. n e. 1o ) ) | 
						
							| 14 |  | 0ex |  |-  (/) e. _V | 
						
							| 15 |  | nnord |  |-  ( n e. _om -> Ord n ) | 
						
							| 16 |  | ordelsuc |  |-  ( ( (/) e. _V /\ Ord n ) -> ( (/) e. n <-> suc (/) C_ n ) ) | 
						
							| 17 | 14 15 16 | sylancr |  |-  ( n e. _om -> ( (/) e. n <-> suc (/) C_ n ) ) | 
						
							| 18 | 8 | sseq1i |  |-  ( 1o C_ n <-> suc (/) C_ n ) | 
						
							| 19 |  | 1on |  |-  1o e. On | 
						
							| 20 | 19 | onordi |  |-  Ord 1o | 
						
							| 21 |  | ordtri1 |  |-  ( ( Ord 1o /\ Ord n ) -> ( 1o C_ n <-> -. n e. 1o ) ) | 
						
							| 22 | 20 15 21 | sylancr |  |-  ( n e. _om -> ( 1o C_ n <-> -. n e. 1o ) ) | 
						
							| 23 | 18 22 | bitr3id |  |-  ( n e. _om -> ( suc (/) C_ n <-> -. n e. 1o ) ) | 
						
							| 24 | 17 23 | bitr2d |  |-  ( n e. _om -> ( -. n e. 1o <-> (/) e. n ) ) | 
						
							| 25 | 24 | biimpa |  |-  ( ( n e. _om /\ -. n e. 1o ) -> (/) e. n ) | 
						
							| 26 | 13 25 | sylbi |  |-  ( n e. ( _om \ 1o ) -> (/) e. n ) | 
						
							| 27 | 26 | adantr |  |-  ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. n ) | 
						
							| 28 | 11 12 27 | rspcdva |  |-  ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) R ( f ` 1o ) ) | 
						
							| 29 | 5 28 | eqbrtrrd |  |-  ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x R ( f ` 1o ) ) | 
						
							| 30 |  | vex |  |-  x e. _V | 
						
							| 31 |  | fvex |  |-  ( f ` 1o ) e. _V | 
						
							| 32 | 30 31 | breldm |  |-  ( x R ( f ` 1o ) -> x e. dom R ) | 
						
							| 33 | 29 32 | syl |  |-  ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x e. dom R ) | 
						
							| 34 | 33 | ex |  |-  ( n e. ( _om \ 1o ) -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) | 
						
							| 35 | 34 | exlimdv |  |-  ( n e. ( _om \ 1o ) -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) | 
						
							| 36 | 35 | rexlimiv |  |-  ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) | 
						
							| 37 | 36 | exlimiv |  |-  ( E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) | 
						
							| 38 | 37 | abssi |  |-  { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } C_ dom R | 
						
							| 39 | 4 38 | eqsstri |  |-  dom t++ R C_ dom R | 
						
							| 40 |  | dmresv |  |-  dom ( R |` _V ) = dom R | 
						
							| 41 |  | relres |  |-  Rel ( R |` _V ) | 
						
							| 42 |  | ssttrcl |  |-  ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) | 
						
							| 43 | 41 42 | ax-mp |  |-  ( R |` _V ) C_ t++ ( R |` _V ) | 
						
							| 44 |  | ttrclresv |  |-  t++ ( R |` _V ) = t++ R | 
						
							| 45 | 43 44 | sseqtri |  |-  ( R |` _V ) C_ t++ R | 
						
							| 46 |  | dmss |  |-  ( ( R |` _V ) C_ t++ R -> dom ( R |` _V ) C_ dom t++ R ) | 
						
							| 47 | 45 46 | ax-mp |  |-  dom ( R |` _V ) C_ dom t++ R | 
						
							| 48 | 40 47 | eqsstrri |  |-  dom R C_ dom t++ R | 
						
							| 49 | 39 48 | eqssi |  |-  dom t++ R = dom R |