Metamath Proof Explorer


Theorem dmvolss

Description: Lebesgue measurable sets are subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion dmvolss
|- dom vol C_ ~P RR

Proof

Step Hyp Ref Expression
1 elex
 |-  ( x e. dom vol -> x e. _V )
2 mblss
 |-  ( x e. dom vol -> x C_ RR )
3 1 2 elpwd
 |-  ( x e. dom vol -> x e. ~P RR )
4 3 rgen
 |-  A. x e. dom vol x e. ~P RR
5 dfss3
 |-  ( dom vol C_ ~P RR <-> A. x e. dom vol x e. ~P RR )
6 4 5 mpbir
 |-  dom vol C_ ~P RR