Metamath Proof Explorer


Theorem dmxpOLD

Description: Obsolete version of dmxp as of 19-Dec-2024. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dmxpOLD
|- ( B =/= (/) -> dom ( A X. B ) = A )

Proof

Step Hyp Ref Expression
1 df-xp
 |-  ( A X. B ) = { <. y , x >. | ( y e. A /\ x e. B ) }
2 1 dmeqi
 |-  dom ( A X. B ) = dom { <. y , x >. | ( y e. A /\ x e. B ) }
3 n0
 |-  ( B =/= (/) <-> E. x x e. B )
4 3 biimpi
 |-  ( B =/= (/) -> E. x x e. B )
5 4 ralrimivw
 |-  ( B =/= (/) -> A. y e. A E. x x e. B )
6 dmopab3
 |-  ( A. y e. A E. x x e. B <-> dom { <. y , x >. | ( y e. A /\ x e. B ) } = A )
7 5 6 sylib
 |-  ( B =/= (/) -> dom { <. y , x >. | ( y e. A /\ x e. B ) } = A )
8 2 7 eqtrid
 |-  ( B =/= (/) -> dom ( A X. B ) = A )