Metamath Proof Explorer


Theorem dmxpin

Description: The domain of the intersection of two Cartesian squares. Unlike in dmin , equality holds. (Contributed by NM, 29-Jan-2008)

Ref Expression
Assertion dmxpin
|- dom ( ( A X. A ) i^i ( B X. B ) ) = ( A i^i B )

Proof

Step Hyp Ref Expression
1 inxp
 |-  ( ( A X. A ) i^i ( B X. B ) ) = ( ( A i^i B ) X. ( A i^i B ) )
2 1 dmeqi
 |-  dom ( ( A X. A ) i^i ( B X. B ) ) = dom ( ( A i^i B ) X. ( A i^i B ) )
3 dmxpid
 |-  dom ( ( A i^i B ) X. ( A i^i B ) ) = ( A i^i B )
4 2 3 eqtri
 |-  dom ( ( A X. A ) i^i ( B X. B ) ) = ( A i^i B )