Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
|- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
2 |
|
dnnumch.a |
|- ( ph -> A e. V ) |
3 |
|
dnnumch.g |
|- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
4 |
|
recsval |
|- ( x e. On -> ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) ` x ) = ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) ) ) |
5 |
1
|
fveq1i |
|- ( F ` x ) = ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) ` x ) |
6 |
1
|
tfr1 |
|- F Fn On |
7 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
8 |
6 7
|
ax-mp |
|- Fun F |
9 |
|
vex |
|- x e. _V |
10 |
|
resfunexg |
|- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
11 |
8 9 10
|
mp2an |
|- ( F |` x ) e. _V |
12 |
|
rneq |
|- ( w = ( F |` x ) -> ran w = ran ( F |` x ) ) |
13 |
|
df-ima |
|- ( F " x ) = ran ( F |` x ) |
14 |
12 13
|
eqtr4di |
|- ( w = ( F |` x ) -> ran w = ( F " x ) ) |
15 |
14
|
difeq2d |
|- ( w = ( F |` x ) -> ( A \ ran w ) = ( A \ ( F " x ) ) ) |
16 |
15
|
fveq2d |
|- ( w = ( F |` x ) -> ( G ` ( A \ ran w ) ) = ( G ` ( A \ ( F " x ) ) ) ) |
17 |
|
rneq |
|- ( z = w -> ran z = ran w ) |
18 |
17
|
difeq2d |
|- ( z = w -> ( A \ ran z ) = ( A \ ran w ) ) |
19 |
18
|
fveq2d |
|- ( z = w -> ( G ` ( A \ ran z ) ) = ( G ` ( A \ ran w ) ) ) |
20 |
19
|
cbvmptv |
|- ( z e. _V |-> ( G ` ( A \ ran z ) ) ) = ( w e. _V |-> ( G ` ( A \ ran w ) ) ) |
21 |
|
fvex |
|- ( G ` ( A \ ( F " x ) ) ) e. _V |
22 |
16 20 21
|
fvmpt |
|- ( ( F |` x ) e. _V -> ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( F |` x ) ) = ( G ` ( A \ ( F " x ) ) ) ) |
23 |
11 22
|
ax-mp |
|- ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( F |` x ) ) = ( G ` ( A \ ( F " x ) ) ) |
24 |
1
|
reseq1i |
|- ( F |` x ) = ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) |
25 |
24
|
fveq2i |
|- ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( F |` x ) ) = ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) ) |
26 |
23 25
|
eqtr3i |
|- ( G ` ( A \ ( F " x ) ) ) = ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ` ( recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |` x ) ) |
27 |
4 5 26
|
3eqtr4g |
|- ( x e. On -> ( F ` x ) = ( G ` ( A \ ( F " x ) ) ) ) |
28 |
27
|
ad2antlr |
|- ( ( ( ph /\ x e. On ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( F ` x ) = ( G ` ( A \ ( F " x ) ) ) ) |
29 |
|
difss |
|- ( A \ ( F " x ) ) C_ A |
30 |
|
elpw2g |
|- ( A e. V -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) |
31 |
2 30
|
syl |
|- ( ph -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) |
32 |
29 31
|
mpbiri |
|- ( ph -> ( A \ ( F " x ) ) e. ~P A ) |
33 |
|
neeq1 |
|- ( y = ( A \ ( F " x ) ) -> ( y =/= (/) <-> ( A \ ( F " x ) ) =/= (/) ) ) |
34 |
|
fveq2 |
|- ( y = ( A \ ( F " x ) ) -> ( G ` y ) = ( G ` ( A \ ( F " x ) ) ) ) |
35 |
|
id |
|- ( y = ( A \ ( F " x ) ) -> y = ( A \ ( F " x ) ) ) |
36 |
34 35
|
eleq12d |
|- ( y = ( A \ ( F " x ) ) -> ( ( G ` y ) e. y <-> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
37 |
33 36
|
imbi12d |
|- ( y = ( A \ ( F " x ) ) -> ( ( y =/= (/) -> ( G ` y ) e. y ) <-> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
38 |
37
|
rspcva |
|- ( ( ( A \ ( F " x ) ) e. ~P A /\ A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
39 |
32 3 38
|
syl2anc |
|- ( ph -> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ x e. On ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
41 |
40
|
imp |
|- ( ( ( ph /\ x e. On ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( G ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) |
42 |
28 41
|
eqeltrd |
|- ( ( ( ph /\ x e. On ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( F ` x ) e. ( A \ ( F " x ) ) ) |
43 |
42
|
ex |
|- ( ( ph /\ x e. On ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
44 |
43
|
ralrimiva |
|- ( ph -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
45 |
6
|
tz7.49c |
|- ( ( A e. V /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
46 |
2 44 45
|
syl2anc |
|- ( ph -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |