Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
|- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
2 |
|
dnnumch.a |
|- ( ph -> A e. V ) |
3 |
|
dnnumch.g |
|- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
4 |
1 2 3
|
dnnumch1 |
|- ( ph -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
5 |
|
f1ofo |
|- ( ( F |` x ) : x -1-1-onto-> A -> ( F |` x ) : x -onto-> A ) |
6 |
|
forn |
|- ( ( F |` x ) : x -onto-> A -> ran ( F |` x ) = A ) |
7 |
5 6
|
syl |
|- ( ( F |` x ) : x -1-1-onto-> A -> ran ( F |` x ) = A ) |
8 |
|
resss |
|- ( F |` x ) C_ F |
9 |
|
rnss |
|- ( ( F |` x ) C_ F -> ran ( F |` x ) C_ ran F ) |
10 |
8 9
|
mp1i |
|- ( ( F |` x ) : x -1-1-onto-> A -> ran ( F |` x ) C_ ran F ) |
11 |
7 10
|
eqsstrrd |
|- ( ( F |` x ) : x -1-1-onto-> A -> A C_ ran F ) |
12 |
11
|
a1i |
|- ( ph -> ( ( F |` x ) : x -1-1-onto-> A -> A C_ ran F ) ) |
13 |
12
|
rexlimdvw |
|- ( ph -> ( E. x e. On ( F |` x ) : x -1-1-onto-> A -> A C_ ran F ) ) |
14 |
4 13
|
mpd |
|- ( ph -> A C_ ran F ) |