| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dnnumch.f |  |-  F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) | 
						
							| 2 |  | dnnumch.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | dnnumch.g |  |-  ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) | 
						
							| 4 |  | cnvimass |  |-  ( `' F " { x } ) C_ dom F | 
						
							| 5 | 1 | tfr1 |  |-  F Fn On | 
						
							| 6 | 5 | fndmi |  |-  dom F = On | 
						
							| 7 | 4 6 | sseqtri |  |-  ( `' F " { x } ) C_ On | 
						
							| 8 | 1 2 3 | dnnumch2 |  |-  ( ph -> A C_ ran F ) | 
						
							| 9 | 8 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. ran F ) | 
						
							| 10 |  | inisegn0 |  |-  ( x e. ran F <-> ( `' F " { x } ) =/= (/) ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ( ph /\ x e. A ) -> ( `' F " { x } ) =/= (/) ) | 
						
							| 12 |  | oninton |  |-  ( ( ( `' F " { x } ) C_ On /\ ( `' F " { x } ) =/= (/) ) -> |^| ( `' F " { x } ) e. On ) | 
						
							| 13 | 7 11 12 | sylancr |  |-  ( ( ph /\ x e. A ) -> |^| ( `' F " { x } ) e. On ) | 
						
							| 14 | 13 | fmpttd |  |-  ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) | 
						
							| 15 | 1 2 3 | dnnumch3lem |  |-  ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) | 
						
							| 16 | 15 | adantrr |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) | 
						
							| 17 | 1 2 3 | dnnumch3lem |  |-  ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) | 
						
							| 18 | 17 | adantrl |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) | 
						
							| 19 | 16 18 | eqeq12d |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) | 
						
							| 22 |  | cnvimass |  |-  ( `' F " { v } ) C_ dom F | 
						
							| 23 | 22 6 | sseqtri |  |-  ( `' F " { v } ) C_ On | 
						
							| 24 | 8 | sselda |  |-  ( ( ph /\ v e. A ) -> v e. ran F ) | 
						
							| 25 |  | inisegn0 |  |-  ( v e. ran F <-> ( `' F " { v } ) =/= (/) ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ( ph /\ v e. A ) -> ( `' F " { v } ) =/= (/) ) | 
						
							| 27 |  | onint |  |-  ( ( ( `' F " { v } ) C_ On /\ ( `' F " { v } ) =/= (/) ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) | 
						
							| 28 | 23 26 27 | sylancr |  |-  ( ( ph /\ v e. A ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) | 
						
							| 29 |  | fniniseg |  |-  ( F Fn On -> ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) ) | 
						
							| 30 | 5 29 | ax-mp |  |-  ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) | 
						
							| 31 | 30 | simprbi |  |-  ( |^| ( `' F " { v } ) e. ( `' F " { v } ) -> ( F ` |^| ( `' F " { v } ) ) = v ) | 
						
							| 32 | 28 31 | syl |  |-  ( ( ph /\ v e. A ) -> ( F ` |^| ( `' F " { v } ) ) = v ) | 
						
							| 33 | 32 | adantrr |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) | 
						
							| 35 |  | cnvimass |  |-  ( `' F " { w } ) C_ dom F | 
						
							| 36 | 35 6 | sseqtri |  |-  ( `' F " { w } ) C_ On | 
						
							| 37 | 8 | sselda |  |-  ( ( ph /\ w e. A ) -> w e. ran F ) | 
						
							| 38 |  | inisegn0 |  |-  ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) | 
						
							| 40 |  | onint |  |-  ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) | 
						
							| 41 | 36 39 40 | sylancr |  |-  ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) | 
						
							| 42 |  | fniniseg |  |-  ( F Fn On -> ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) ) | 
						
							| 43 | 5 42 | ax-mp |  |-  ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) | 
						
							| 44 | 43 | simprbi |  |-  ( |^| ( `' F " { w } ) e. ( `' F " { w } ) -> ( F ` |^| ( `' F " { w } ) ) = w ) | 
						
							| 45 | 41 44 | syl |  |-  ( ( ph /\ w e. A ) -> ( F ` |^| ( `' F " { w } ) ) = w ) | 
						
							| 46 | 45 | adantrl |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) | 
						
							| 48 | 21 34 47 | 3eqtr3d |  |-  ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> v = w ) | 
						
							| 49 | 48 | ex |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> v = w ) ) | 
						
							| 50 | 19 49 | sylbid |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) | 
						
							| 51 | 50 | ralrimivva |  |-  ( ph -> A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) | 
						
							| 52 |  | dff13 |  |-  ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On /\ A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) ) | 
						
							| 53 | 14 51 52 | sylanbrc |  |-  ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |