Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
|- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
2 |
|
dnnumch.a |
|- ( ph -> A e. V ) |
3 |
|
dnnumch.g |
|- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
4 |
|
cnvimass |
|- ( `' F " { x } ) C_ dom F |
5 |
1
|
tfr1 |
|- F Fn On |
6 |
5
|
fndmi |
|- dom F = On |
7 |
4 6
|
sseqtri |
|- ( `' F " { x } ) C_ On |
8 |
1 2 3
|
dnnumch2 |
|- ( ph -> A C_ ran F ) |
9 |
8
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ran F ) |
10 |
|
inisegn0 |
|- ( x e. ran F <-> ( `' F " { x } ) =/= (/) ) |
11 |
9 10
|
sylib |
|- ( ( ph /\ x e. A ) -> ( `' F " { x } ) =/= (/) ) |
12 |
|
oninton |
|- ( ( ( `' F " { x } ) C_ On /\ ( `' F " { x } ) =/= (/) ) -> |^| ( `' F " { x } ) e. On ) |
13 |
7 11 12
|
sylancr |
|- ( ( ph /\ x e. A ) -> |^| ( `' F " { x } ) e. On ) |
14 |
13
|
fmpttd |
|- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) |
15 |
1 2 3
|
dnnumch3lem |
|- ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
16 |
15
|
adantrr |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
17 |
1 2 3
|
dnnumch3lem |
|- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
18 |
17
|
adantrl |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
19 |
16 18
|
eqeq12d |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) ) |
20 |
|
fveq2 |
|- ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) |
21 |
20
|
adantl |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) |
22 |
|
cnvimass |
|- ( `' F " { v } ) C_ dom F |
23 |
22 6
|
sseqtri |
|- ( `' F " { v } ) C_ On |
24 |
8
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. ran F ) |
25 |
|
inisegn0 |
|- ( v e. ran F <-> ( `' F " { v } ) =/= (/) ) |
26 |
24 25
|
sylib |
|- ( ( ph /\ v e. A ) -> ( `' F " { v } ) =/= (/) ) |
27 |
|
onint |
|- ( ( ( `' F " { v } ) C_ On /\ ( `' F " { v } ) =/= (/) ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) |
28 |
23 26 27
|
sylancr |
|- ( ( ph /\ v e. A ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) |
29 |
|
fniniseg |
|- ( F Fn On -> ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) ) |
30 |
5 29
|
ax-mp |
|- ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) |
31 |
30
|
simprbi |
|- ( |^| ( `' F " { v } ) e. ( `' F " { v } ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
32 |
28 31
|
syl |
|- ( ( ph /\ v e. A ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
33 |
32
|
adantrr |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
35 |
|
cnvimass |
|- ( `' F " { w } ) C_ dom F |
36 |
35 6
|
sseqtri |
|- ( `' F " { w } ) C_ On |
37 |
8
|
sselda |
|- ( ( ph /\ w e. A ) -> w e. ran F ) |
38 |
|
inisegn0 |
|- ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) |
39 |
37 38
|
sylib |
|- ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) |
40 |
|
onint |
|- ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) |
41 |
36 39 40
|
sylancr |
|- ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) |
42 |
|
fniniseg |
|- ( F Fn On -> ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) ) |
43 |
5 42
|
ax-mp |
|- ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) |
44 |
43
|
simprbi |
|- ( |^| ( `' F " { w } ) e. ( `' F " { w } ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
45 |
41 44
|
syl |
|- ( ( ph /\ w e. A ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
46 |
45
|
adantrl |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
48 |
21 34 47
|
3eqtr3d |
|- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> v = w ) |
49 |
48
|
ex |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> v = w ) ) |
50 |
19 49
|
sylbid |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) |
51 |
50
|
ralrimivva |
|- ( ph -> A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) |
52 |
|
dff13 |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On /\ A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) ) |
53 |
14 51 52
|
sylanbrc |
|- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |