| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dnnumch.f |  |-  F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) | 
						
							| 2 |  | dnnumch.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | dnnumch.g |  |-  ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) | 
						
							| 4 |  | eqid |  |-  ( x e. A |-> |^| ( `' F " { x } ) ) = ( x e. A |-> |^| ( `' F " { x } ) ) | 
						
							| 5 |  | sneq |  |-  ( x = w -> { x } = { w } ) | 
						
							| 6 | 5 | imaeq2d |  |-  ( x = w -> ( `' F " { x } ) = ( `' F " { w } ) ) | 
						
							| 7 | 6 | inteqd |  |-  ( x = w -> |^| ( `' F " { x } ) = |^| ( `' F " { w } ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ w e. A ) -> w e. A ) | 
						
							| 9 |  | cnvimass |  |-  ( `' F " { w } ) C_ dom F | 
						
							| 10 | 1 | tfr1 |  |-  F Fn On | 
						
							| 11 | 10 | fndmi |  |-  dom F = On | 
						
							| 12 | 9 11 | sseqtri |  |-  ( `' F " { w } ) C_ On | 
						
							| 13 | 1 2 3 | dnnumch2 |  |-  ( ph -> A C_ ran F ) | 
						
							| 14 | 13 | sselda |  |-  ( ( ph /\ w e. A ) -> w e. ran F ) | 
						
							| 15 |  | inisegn0 |  |-  ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) | 
						
							| 17 |  | oninton |  |-  ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. On ) | 
						
							| 18 | 12 16 17 | sylancr |  |-  ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. On ) | 
						
							| 19 | 4 7 8 18 | fvmptd3 |  |-  ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |