| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnsconst.1 |
|- X = U. J |
| 2 |
|
dnsconst.2 |
|- Y = U. K |
| 3 |
|
simplr |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F e. ( J Cn K ) ) |
| 4 |
1 2
|
cnf |
|- ( F e. ( J Cn K ) -> F : X --> Y ) |
| 5 |
|
ffn |
|- ( F : X --> Y -> F Fn X ) |
| 6 |
3 4 5
|
3syl |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F Fn X ) |
| 7 |
|
simpr3 |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> ( ( cls ` J ) ` A ) = X ) |
| 8 |
|
simpll |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> K e. Fre ) |
| 9 |
|
simpr1 |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> P e. Y ) |
| 10 |
2
|
t1sncld |
|- ( ( K e. Fre /\ P e. Y ) -> { P } e. ( Clsd ` K ) ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> { P } e. ( Clsd ` K ) ) |
| 12 |
|
cnclima |
|- ( ( F e. ( J Cn K ) /\ { P } e. ( Clsd ` K ) ) -> ( `' F " { P } ) e. ( Clsd ` J ) ) |
| 13 |
3 11 12
|
syl2anc |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> ( `' F " { P } ) e. ( Clsd ` J ) ) |
| 14 |
|
simpr2 |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> A C_ ( `' F " { P } ) ) |
| 15 |
1
|
clsss2 |
|- ( ( ( `' F " { P } ) e. ( Clsd ` J ) /\ A C_ ( `' F " { P } ) ) -> ( ( cls ` J ) ` A ) C_ ( `' F " { P } ) ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> ( ( cls ` J ) ` A ) C_ ( `' F " { P } ) ) |
| 17 |
7 16
|
eqsstrrd |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> X C_ ( `' F " { P } ) ) |
| 18 |
|
fconst3 |
|- ( F : X --> { P } <-> ( F Fn X /\ X C_ ( `' F " { P } ) ) ) |
| 19 |
6 17 18
|
sylanbrc |
|- ( ( ( K e. Fre /\ F e. ( J Cn K ) ) /\ ( P e. Y /\ A C_ ( `' F " { P } ) /\ ( ( cls ` J ) ` A ) = X ) ) -> F : X --> { P } ) |