| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dnnumch.f |  |-  F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) | 
						
							| 2 |  | dnnumch.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | dnnumch.g |  |-  ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) | 
						
							| 4 |  | dnwech.h |  |-  H = { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } | 
						
							| 5 | 1 2 3 | dnnumch3 |  |-  ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) | 
						
							| 6 |  | f1f1orn |  |-  ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) ) | 
						
							| 8 |  | f1f |  |-  ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) | 
						
							| 9 |  | frn |  |-  ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On -> ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On ) | 
						
							| 10 | 5 8 9 | 3syl |  |-  ( ph -> ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On ) | 
						
							| 11 |  | epweon |  |-  _E We On | 
						
							| 12 |  | wess |  |-  ( ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On -> ( _E We On -> _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) ) ) | 
						
							| 13 | 10 11 12 | mpisyl |  |-  ( ph -> _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) ) | 
						
							| 14 |  | eqid |  |-  { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } = { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } | 
						
							| 15 | 14 | f1owe |  |-  ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) -> ( _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) -> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) ) | 
						
							| 16 | 7 13 15 | sylc |  |-  ( ph -> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) | 
						
							| 17 |  | fvex |  |-  ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) e. _V | 
						
							| 18 | 17 | epeli |  |-  ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) e. ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) | 
						
							| 19 | 1 2 3 | dnnumch3lem |  |-  ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) | 
						
							| 20 | 19 | adantrr |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) | 
						
							| 21 | 1 2 3 | dnnumch3lem |  |-  ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) | 
						
							| 22 | 21 | adantrl |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) | 
						
							| 23 | 20 22 | eleq12d |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) e. ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) ) | 
						
							| 24 | 18 23 | bitr2id |  |-  ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) ) | 
						
							| 25 | 24 | pm5.32da |  |-  ( ph -> ( ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) <-> ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) ) ) | 
						
							| 26 | 25 | opabbidv |  |-  ( ph -> { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } ) | 
						
							| 27 |  | incom |  |-  ( H i^i ( A X. A ) ) = ( ( A X. A ) i^i H ) | 
						
							| 28 |  | df-xp |  |-  ( A X. A ) = { <. v , w >. | ( v e. A /\ w e. A ) } | 
						
							| 29 | 28 4 | ineq12i |  |-  ( ( A X. A ) i^i H ) = ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } ) | 
						
							| 30 |  | inopab |  |-  ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } | 
						
							| 31 | 27 29 30 | 3eqtri |  |-  ( H i^i ( A X. A ) ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } | 
						
							| 32 |  | incom |  |-  ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) = ( ( A X. A ) i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) | 
						
							| 33 | 28 | ineq1i |  |-  ( ( A X. A ) i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) = ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) | 
						
							| 34 |  | inopab |  |-  ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } | 
						
							| 35 | 32 33 34 | 3eqtri |  |-  ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } | 
						
							| 36 | 26 31 35 | 3eqtr4g |  |-  ( ph -> ( H i^i ( A X. A ) ) = ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) ) | 
						
							| 37 |  | weeq1 |  |-  ( ( H i^i ( A X. A ) ) = ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) -> ( ( H i^i ( A X. A ) ) We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ph -> ( ( H i^i ( A X. A ) ) We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) ) | 
						
							| 39 |  | weinxp |  |-  ( H We A <-> ( H i^i ( A X. A ) ) We A ) | 
						
							| 40 |  | weinxp |  |-  ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) | 
						
							| 41 | 38 39 40 | 3bitr4g |  |-  ( ph -> ( H We A <-> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) ) | 
						
							| 42 | 16 41 | mpbird |  |-  ( ph -> H We A ) |