Step |
Hyp |
Ref |
Expression |
1 |
|
dnnumch.f |
|- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
2 |
|
dnnumch.a |
|- ( ph -> A e. V ) |
3 |
|
dnnumch.g |
|- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
4 |
|
dnwech.h |
|- H = { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } |
5 |
1 2 3
|
dnnumch3 |
|- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |
6 |
|
f1f1orn |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) ) |
7 |
5 6
|
syl |
|- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) ) |
8 |
|
f1f |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) |
9 |
|
frn |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On -> ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On ) |
10 |
5 8 9
|
3syl |
|- ( ph -> ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On ) |
11 |
|
epweon |
|- _E We On |
12 |
|
wess |
|- ( ran ( x e. A |-> |^| ( `' F " { x } ) ) C_ On -> ( _E We On -> _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) ) ) |
13 |
10 11 12
|
mpisyl |
|- ( ph -> _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) ) |
14 |
|
eqid |
|- { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } = { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } |
15 |
14
|
f1owe |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-onto-> ran ( x e. A |-> |^| ( `' F " { x } ) ) -> ( _E We ran ( x e. A |-> |^| ( `' F " { x } ) ) -> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) ) |
16 |
7 13 15
|
sylc |
|- ( ph -> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) |
17 |
|
fvex |
|- ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) e. _V |
18 |
17
|
epeli |
|- ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) e. ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) |
19 |
1 2 3
|
dnnumch3lem |
|- ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
20 |
19
|
adantrr |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
21 |
1 2 3
|
dnnumch3lem |
|- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
22 |
21
|
adantrl |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
23 |
20 22
|
eleq12d |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) e. ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) ) |
24 |
18 23
|
bitr2id |
|- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) ) |
25 |
24
|
pm5.32da |
|- ( ph -> ( ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) <-> ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) ) ) |
26 |
25
|
opabbidv |
|- ( ph -> { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } ) |
27 |
|
incom |
|- ( H i^i ( A X. A ) ) = ( ( A X. A ) i^i H ) |
28 |
|
df-xp |
|- ( A X. A ) = { <. v , w >. | ( v e. A /\ w e. A ) } |
29 |
28 4
|
ineq12i |
|- ( ( A X. A ) i^i H ) = ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } ) |
30 |
|
inopab |
|- ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) } ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } |
31 |
27 29 30
|
3eqtri |
|- ( H i^i ( A X. A ) ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ |^| ( `' F " { v } ) e. |^| ( `' F " { w } ) ) } |
32 |
|
incom |
|- ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) = ( ( A X. A ) i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) |
33 |
28
|
ineq1i |
|- ( ( A X. A ) i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) = ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) |
34 |
|
inopab |
|- ( { <. v , w >. | ( v e. A /\ w e. A ) } i^i { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } |
35 |
32 33 34
|
3eqtri |
|- ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) = { <. v , w >. | ( ( v e. A /\ w e. A ) /\ ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) ) } |
36 |
26 31 35
|
3eqtr4g |
|- ( ph -> ( H i^i ( A X. A ) ) = ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) ) |
37 |
|
weeq1 |
|- ( ( H i^i ( A X. A ) ) = ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) -> ( ( H i^i ( A X. A ) ) We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) ) |
38 |
36 37
|
syl |
|- ( ph -> ( ( H i^i ( A X. A ) ) We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) ) |
39 |
|
weinxp |
|- ( H We A <-> ( H i^i ( A X. A ) ) We A ) |
40 |
|
weinxp |
|- ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A <-> ( { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } i^i ( A X. A ) ) We A ) |
41 |
38 39 40
|
3bitr4g |
|- ( ph -> ( H We A <-> { <. v , w >. | ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) _E ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) } We A ) ) |
42 |
16 41
|
mpbird |
|- ( ph -> H We A ) |