Metamath Proof Explorer


Theorem doca3N

Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doca2.h
|- H = ( LHyp ` K )
doca2.i
|- I = ( ( DIsoA ` K ) ` W )
doca2.n
|- ._|_ = ( ( ocA ` K ) ` W )
Assertion doca3N
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 doca2.h
 |-  H = ( LHyp ` K )
2 doca2.i
 |-  I = ( ( DIsoA ` K ) ` W )
3 doca2.n
 |-  ._|_ = ( ( ocA ` K ) ` W )
4 1 2 diacnvclN
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. dom I )
5 1 2 3 doca2N
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. dom I ) -> ( ._|_ ` ( ._|_ ` ( I ` ( `' I ` X ) ) ) ) = ( I ` ( `' I ` X ) ) )
6 4 5 syldan
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` ( I ` ( `' I ` X ) ) ) ) = ( I ` ( `' I ` X ) ) )
7 1 2 diaf11N
 |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I )
8 f1ocnvfv2
 |-  ( ( I : dom I -1-1-onto-> ran I /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X )
9 7 8 sylan
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X )
10 9 fveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( I ` ( `' I ` X ) ) ) = ( ._|_ ` X ) )
11 10 fveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` ( I ` ( `' I ` X ) ) ) ) = ( ._|_ ` ( ._|_ ` X ) ) )
12 6 11 9 3eqtr3d
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` X ) ) = X )