Metamath Proof Explorer


Theorem dochord3

Description: Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses doch11.h
|- H = ( LHyp ` K )
doch11.i
|- I = ( ( DIsoH ` K ) ` W )
doch11.o
|- ._|_ = ( ( ocH ` K ) ` W )
doch11.k
|- ( ph -> ( K e. HL /\ W e. H ) )
doch11.x
|- ( ph -> X e. ran I )
doch11.y
|- ( ph -> Y e. ran I )
Assertion dochord3
|- ( ph -> ( X C_ ( ._|_ ` Y ) <-> Y C_ ( ._|_ ` X ) ) )

Proof

Step Hyp Ref Expression
1 doch11.h
 |-  H = ( LHyp ` K )
2 doch11.i
 |-  I = ( ( DIsoH ` K ) ` W )
3 doch11.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
4 doch11.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
5 doch11.x
 |-  ( ph -> X e. ran I )
6 doch11.y
 |-  ( ph -> Y e. ran I )
7 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
8 eqid
 |-  ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) )
9 1 7 2 8 dihrnlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> Y e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) )
10 4 6 9 syl2anc
 |-  ( ph -> Y e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) )
11 eqid
 |-  ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) )
12 11 8 lssss
 |-  ( Y e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) -> Y C_ ( Base ` ( ( DVecH ` K ) ` W ) ) )
13 10 12 syl
 |-  ( ph -> Y C_ ( Base ` ( ( DVecH ` K ) ` W ) ) )
14 1 2 7 11 3 dochcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ Y C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( ._|_ ` Y ) e. ran I )
15 4 13 14 syl2anc
 |-  ( ph -> ( ._|_ ` Y ) e. ran I )
16 1 2 3 4 5 15 dochord
 |-  ( ph -> ( X C_ ( ._|_ ` Y ) <-> ( ._|_ ` ( ._|_ ` Y ) ) C_ ( ._|_ ` X ) ) )
17 1 2 3 dochoc
 |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( ._|_ ` ( ._|_ ` Y ) ) = Y )
18 4 6 17 syl2anc
 |-  ( ph -> ( ._|_ ` ( ._|_ ` Y ) ) = Y )
19 18 sseq1d
 |-  ( ph -> ( ( ._|_ ` ( ._|_ ` Y ) ) C_ ( ._|_ ` X ) <-> Y C_ ( ._|_ ` X ) ) )
20 16 19 bitrd
 |-  ( ph -> ( X C_ ( ._|_ ` Y ) <-> Y C_ ( ._|_ ` X ) ) )