| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|- ( A ~<_ (/) -> E. f f : A -1-1-> (/) ) |
| 2 |
|
f1f |
|- ( f : A -1-1-> (/) -> f : A --> (/) ) |
| 3 |
|
f00 |
|- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
| 4 |
3
|
simprbi |
|- ( f : A --> (/) -> A = (/) ) |
| 5 |
2 4
|
syl |
|- ( f : A -1-1-> (/) -> A = (/) ) |
| 6 |
5
|
exlimiv |
|- ( E. f f : A -1-1-> (/) -> A = (/) ) |
| 7 |
1 6
|
syl |
|- ( A ~<_ (/) -> A = (/) ) |
| 8 |
|
en0 |
|- ( A ~~ (/) <-> A = (/) ) |
| 9 |
|
endom |
|- ( A ~~ (/) -> A ~<_ (/) ) |
| 10 |
8 9
|
sylbir |
|- ( A = (/) -> A ~<_ (/) ) |
| 11 |
7 10
|
impbii |
|- ( A ~<_ (/) <-> A = (/) ) |