Metamath Proof Explorer


Theorem dom2d

Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 20-May-2013)

Ref Expression
Hypotheses dom2d.1
|- ( ph -> ( x e. A -> C e. B ) )
dom2d.2
|- ( ph -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) )
Assertion dom2d
|- ( ph -> ( B e. R -> A ~<_ B ) )

Proof

Step Hyp Ref Expression
1 dom2d.1
 |-  ( ph -> ( x e. A -> C e. B ) )
2 dom2d.2
 |-  ( ph -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) )
3 1 2 dom2lem
 |-  ( ph -> ( x e. A |-> C ) : A -1-1-> B )
4 f1domg
 |-  ( B e. R -> ( ( x e. A |-> C ) : A -1-1-> B -> A ~<_ B ) )
5 3 4 syl5com
 |-  ( ph -> ( B e. R -> A ~<_ B ) )