Metamath Proof Explorer


Theorem dom3

Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. C and D can be read C ( x ) and D ( y ) , as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013)

Ref Expression
Hypotheses dom2.1
|- ( x e. A -> C e. B )
dom2.2
|- ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) )
Assertion dom3
|- ( ( A e. V /\ B e. W ) -> A ~<_ B )

Proof

Step Hyp Ref Expression
1 dom2.1
 |-  ( x e. A -> C e. B )
2 dom2.2
 |-  ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) )
3 1 a1i
 |-  ( ( A e. V /\ B e. W ) -> ( x e. A -> C e. B ) )
4 2 a1i
 |-  ( ( A e. V /\ B e. W ) -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) )
5 simpl
 |-  ( ( A e. V /\ B e. W ) -> A e. V )
6 simpr
 |-  ( ( A e. V /\ B e. W ) -> B e. W )
7 3 4 5 6 dom3d
 |-  ( ( A e. V /\ B e. W ) -> A ~<_ B )