Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. C and D can be read C ( x ) and D ( y ) , as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dom2.1 | |- ( x e. A -> C e. B ) |
|
dom2.2 | |- ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) |
||
Assertion | dom3 | |- ( ( A e. V /\ B e. W ) -> A ~<_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2.1 | |- ( x e. A -> C e. B ) |
|
2 | dom2.2 | |- ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) |
|
3 | 1 | a1i | |- ( ( A e. V /\ B e. W ) -> ( x e. A -> C e. B ) ) |
4 | 2 | a1i | |- ( ( A e. V /\ B e. W ) -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) ) |
5 | simpl | |- ( ( A e. V /\ B e. W ) -> A e. V ) |
|
6 | simpr | |- ( ( A e. V /\ B e. W ) -> B e. W ) |
|
7 | 3 4 5 6 | dom3d | |- ( ( A e. V /\ B e. W ) -> A ~<_ B ) |