| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomdom |  |-  ( A ~< B -> A ~<_ B ) | 
						
							| 2 |  | relsdom |  |-  Rel ~< | 
						
							| 3 | 2 | brrelex2i |  |-  ( A ~< B -> B e. _V ) | 
						
							| 4 |  | brdomg |  |-  ( B e. _V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( A ~< B -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) | 
						
							| 6 | 1 5 | mpbid |  |-  ( A ~< B -> E. f f : A -1-1-> B ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A ~< B /\ C e. B ) -> E. f f : A -1-1-> B ) | 
						
							| 8 |  | f1f |  |-  ( f : A -1-1-> B -> f : A --> B ) | 
						
							| 9 | 8 | frnd |  |-  ( f : A -1-1-> B -> ran f C_ B ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ran f C_ B ) | 
						
							| 11 |  | sdomnen |  |-  ( A ~< B -> -. A ~~ B ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> -. A ~~ B ) | 
						
							| 13 |  | vex |  |-  f e. _V | 
						
							| 14 |  | dff1o5 |  |-  ( f : A -1-1-onto-> B <-> ( f : A -1-1-> B /\ ran f = B ) ) | 
						
							| 15 | 14 | biimpri |  |-  ( ( f : A -1-1-> B /\ ran f = B ) -> f : A -1-1-onto-> B ) | 
						
							| 16 |  | f1oen3g |  |-  ( ( f e. _V /\ f : A -1-1-onto-> B ) -> A ~~ B ) | 
						
							| 17 | 13 15 16 | sylancr |  |-  ( ( f : A -1-1-> B /\ ran f = B ) -> A ~~ B ) | 
						
							| 18 | 17 | ex |  |-  ( f : A -1-1-> B -> ( ran f = B -> A ~~ B ) ) | 
						
							| 19 | 18 | necon3bd |  |-  ( f : A -1-1-> B -> ( -. A ~~ B -> ran f =/= B ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( -. A ~~ B -> ran f =/= B ) ) | 
						
							| 21 | 12 20 | mpd |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ran f =/= B ) | 
						
							| 22 |  | pssdifn0 |  |-  ( ( ran f C_ B /\ ran f =/= B ) -> ( B \ ran f ) =/= (/) ) | 
						
							| 23 | 10 21 22 | syl2anc |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( B \ ran f ) =/= (/) ) | 
						
							| 24 |  | n0 |  |-  ( ( B \ ran f ) =/= (/) <-> E. x x e. ( B \ ran f ) ) | 
						
							| 25 | 23 24 | sylib |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> E. x x e. ( B \ ran f ) ) | 
						
							| 26 | 2 | brrelex1i |  |-  ( A ~< B -> A e. _V ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> A e. _V ) | 
						
							| 28 | 3 | ad2antrr |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> B e. _V ) | 
						
							| 29 | 28 | difexd |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> ( B \ { x } ) e. _V ) | 
						
							| 30 |  | eldifn |  |-  ( x e. ( B \ ran f ) -> -. x e. ran f ) | 
						
							| 31 |  | disjsn |  |-  ( ( ran f i^i { x } ) = (/) <-> -. x e. ran f ) | 
						
							| 32 | 30 31 | sylibr |  |-  ( x e. ( B \ ran f ) -> ( ran f i^i { x } ) = (/) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ( ran f i^i { x } ) = (/) ) | 
						
							| 34 | 9 | adantr |  |-  ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ran f C_ B ) | 
						
							| 35 |  | reldisj |  |-  ( ran f C_ B -> ( ( ran f i^i { x } ) = (/) <-> ran f C_ ( B \ { x } ) ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ( ( ran f i^i { x } ) = (/) <-> ran f C_ ( B \ { x } ) ) ) | 
						
							| 37 | 33 36 | mpbid |  |-  ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> ran f C_ ( B \ { x } ) ) | 
						
							| 38 |  | f1ssr |  |-  ( ( f : A -1-1-> B /\ ran f C_ ( B \ { x } ) ) -> f : A -1-1-> ( B \ { x } ) ) | 
						
							| 39 | 37 38 | syldan |  |-  ( ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) -> f : A -1-1-> ( B \ { x } ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> f : A -1-1-> ( B \ { x } ) ) | 
						
							| 41 |  | f1dom2g |  |-  ( ( A e. _V /\ ( B \ { x } ) e. _V /\ f : A -1-1-> ( B \ { x } ) ) -> A ~<_ ( B \ { x } ) ) | 
						
							| 42 | 27 29 40 41 | syl3anc |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> A ~<_ ( B \ { x } ) ) | 
						
							| 43 |  | eldifi |  |-  ( x e. ( B \ ran f ) -> x e. B ) | 
						
							| 44 | 43 | ad2antll |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> x e. B ) | 
						
							| 45 |  | simplr |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> C e. B ) | 
						
							| 46 |  | difsnen |  |-  ( ( B e. _V /\ x e. B /\ C e. B ) -> ( B \ { x } ) ~~ ( B \ { C } ) ) | 
						
							| 47 | 28 44 45 46 | syl3anc |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> ( B \ { x } ) ~~ ( B \ { C } ) ) | 
						
							| 48 |  | domentr |  |-  ( ( A ~<_ ( B \ { x } ) /\ ( B \ { x } ) ~~ ( B \ { C } ) ) -> A ~<_ ( B \ { C } ) ) | 
						
							| 49 | 42 47 48 | syl2anc |  |-  ( ( ( A ~< B /\ C e. B ) /\ ( f : A -1-1-> B /\ x e. ( B \ ran f ) ) ) -> A ~<_ ( B \ { C } ) ) | 
						
							| 50 | 49 | expr |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( x e. ( B \ ran f ) -> A ~<_ ( B \ { C } ) ) ) | 
						
							| 51 | 50 | exlimdv |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> ( E. x x e. ( B \ ran f ) -> A ~<_ ( B \ { C } ) ) ) | 
						
							| 52 | 25 51 | mpd |  |-  ( ( ( A ~< B /\ C e. B ) /\ f : A -1-1-> B ) -> A ~<_ ( B \ { C } ) ) | 
						
							| 53 | 7 52 | exlimddv |  |-  ( ( A ~< B /\ C e. B ) -> A ~<_ ( B \ { C } ) ) | 
						
							| 54 | 1 | adantr |  |-  ( ( A ~< B /\ -. C e. B ) -> A ~<_ B ) | 
						
							| 55 |  | difsn |  |-  ( -. C e. B -> ( B \ { C } ) = B ) | 
						
							| 56 | 55 | breq2d |  |-  ( -. C e. B -> ( A ~<_ ( B \ { C } ) <-> A ~<_ B ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( A ~< B /\ -. C e. B ) -> ( A ~<_ ( B \ { C } ) <-> A ~<_ B ) ) | 
						
							| 58 | 54 57 | mpbird |  |-  ( ( A ~< B /\ -. C e. B ) -> A ~<_ ( B \ { C } ) ) | 
						
							| 59 | 53 58 | pm2.61dan |  |-  ( A ~< B -> A ~<_ ( B \ { C } ) ) |