Metamath Proof Explorer


Theorem domeng

Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of Enderton p. 146. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion domeng
|- ( B e. C -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( y = B -> ( A ~<_ y <-> A ~<_ B ) )
2 sseq2
 |-  ( y = B -> ( x C_ y <-> x C_ B ) )
3 2 anbi2d
 |-  ( y = B -> ( ( A ~~ x /\ x C_ y ) <-> ( A ~~ x /\ x C_ B ) ) )
4 3 exbidv
 |-  ( y = B -> ( E. x ( A ~~ x /\ x C_ y ) <-> E. x ( A ~~ x /\ x C_ B ) ) )
5 vex
 |-  y e. _V
6 5 domen
 |-  ( A ~<_ y <-> E. x ( A ~~ x /\ x C_ y ) )
7 1 4 6 vtoclbg
 |-  ( B e. C -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) )